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1 (i) Define the O(2) model (with free boundary conditions) on a finite graph Λ ⊂ Zd
and state and prove the Ginibre inequality.

(ii) Show that the magnetisation 〈σ1
x〉Λβ,h is monotone in the external field h > 0

(pointing in the first coordinate direction).

(iii) Assume that the external field is 0. Show that the infinite volume limit of the
expectation 〈cos(2θx)− sin(θy)〉Λβ,0 exists for any x, y ∈ Zd.

(iv) Let Λ̄ be the closure of Λ, i.e., {x ∈ Zd : dist(x,Λ) 6 1} and let Ē denote the
corresponding edges, i.e., the edges of Zd for which at least one endpoint is in Λ. For each
finite square Λ ⊂ Z2 approximately centered at 0, find ϕ ∈ RΛ̄ with ϕ0 = 1 and ϕ|∂Λ = 0
(where ∂Λ = Λ̄ \ Λ) such that

∑
xy⊂Ē(ϕx − ϕy)2 → 0 as Λ→ Z2.

2 Let ΛL be the discrete d-dimensional torus with an even number of vertices L in
every coordinate direction.

(i) State the Gaussian domination bound for the O(n) model on Λ.

(ii) Prove that when d > 3 there exists β0 ∈ (0,∞) such that
lim infh↓0 lim infL→∞〈σ0 · e〉ΛL

β,h > c > 0 for β > β0. Here e ∈ Rn denotes the (unit)

direction of the magnetic field. What happens if the limit lim infL→∞ lim infh↓0〈σ0 · e〉ΛL
β,h?

Explain briefly.

iii) Assuming that the limit m = limh↓0 limL→∞〈σ0 · e〉ΛL
β,h exists, find the limit

limh↓0 limL→∞〈σ0 · u〉ΛL
β,h for any u ∈ Rn.

(iv) Let µ be the uniform probability measure on {±1}. Show that µ⊗ΛL is reflection
positive (through sites) and also through edges when L is odd.
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(i) For the Ising model on Z with free boundary conditions, show that for any β > 0
there is c(β) > 0 such that 〈σ0σx〉Zβ,0 6 e−c(β)|x|.

(ii) For the Ising model on Z with plus or minus boundary conditions, show that
〈σ0〉Z,±β,0 = 0 for all β > 0.

(iii) Compute 〈σ0σ1 · · ·σ2022〉Z,+β,0 . [You may use results established in the lectures if
you cite them carefully.]

(iv) Show that 〈σx1σx2σx3σx4〉Zβ,0 → 0 as min{|xi − xj | : i 6= j} → ∞. [You may use
results established in the lectures if you cite them carefully.]
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(a) (i) Let ΛL ⊂ Z2 be a square of side length L (approximately) centred at 0 ∈ Z2,
and consider the Ising model on ΛL with plus boundary conditions outside ΛL. Show that
〈σ0〉ΛL,+

β,0 is uniformly bounded below when β is sufficiently large.

(ii) Explain how the limit 〈σ0〉Z
2,+
β,0 is defined and deduce that 〈σ0〉Z

2,+
β,0 > 0 for β

sufficiently large.

(iii) Show that 〈σ0〉Z
3,+
β,0 > 0 for β sufficiently large.

(b) Consider the ϕ4 model on Λ ⊂ Zd whose expectation is given by

〈F 〉 ∝
∫

RΛ

e−
1
2

∑
xy(ϕx−ϕy)2−∑

x∈Λ
1
4
gϕ4

x−
∑

x∈Λ
1
2
νϕ2

x F (ϕ) dϕ,

where g > 0 and ν ∈ R. Show that if ν > 0 then 〈ϕxϕy〉 decays exponentially. [You may
use the random walk representation of the ϕ4 model and any results about the decay of
the Green’s function of a simple random walk on Λ ⊂ Z2 without proof.]
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