MAMA/209, NST3AS/209, MAAS/209

MAT3 MATHEMATICAL TRIPOS Part III

Friday, 2 June, 2023 $\,$ 9:00 am to 12:00 pm $\,$

PAPER 209

LATTICE MODELS

Before you begin please read these instructions carefully

Candidates have THREE HOURS to complete the written examination.

Attempt **ALL** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

SPECIAL REQUIREMENTS None

Cover sheet Treasury tag Script paper Rough paper

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF CAMBRIDGE

1 (i) Define the O(2) model (with free boundary conditions) on a finite graph $\Lambda \subset \mathbb{Z}^d$ and state and prove the Ginibre inequality.

(ii) Show that the magnetisation $\langle \sigma_x^1 \rangle_{\beta,h}^{\Lambda}$ is monotone in the external field $h \ge 0$ (pointing in the first coordinate direction).

(iii) Assume that the external field is 0. Show that the infinite volume limit of the expectation $\langle \cos(2\theta_x) - \sin(\theta_y) \rangle_{\beta,0}^{\Lambda}$ exists for any $x, y \in \mathbb{Z}^d$.

(iv) Let $\bar{\Lambda}$ be the closure of Λ , i.e., $\{x \in \mathbb{Z}^d : \operatorname{dist}(x,\Lambda) \leq 1\}$ and let \bar{E} denote the corresponding edges, i.e., the edges of \mathbb{Z}^d for which at least one endpoint is in Λ . For each finite square $\Lambda \subset \mathbb{Z}^2$ approximately centered at 0, find $\varphi \in \mathbb{R}^{\bar{\Lambda}}$ with $\varphi_0 = 1$ and $\varphi|_{\partial \Lambda} = 0$ (where $\partial \Lambda = \bar{\Lambda} \setminus \Lambda$) such that $\sum_{xy \in \bar{E}} (\varphi_x - \varphi_y)^2 \to 0$ as $\Lambda \to \mathbb{Z}^2$.

2 Let Λ_L be the discrete *d*-dimensional torus with an even number of vertices *L* in every coordinate direction.

(i) State the Gaussian domination bound for the O(n) model on Λ .

(ii) Prove that when $d \ge 3$ there exists $\beta_0 \in (0,\infty)$ such that $\liminf_{h\downarrow 0} \liminf_{L\to\infty} \langle \sigma_0 \cdot e \rangle_{\beta,h}^{\Lambda_L} \ge c > 0$ for $\beta > \beta_0$. Here $e \in \mathbb{R}^n$ denotes the (unit) direction of the magnetic field. What happens if the limit $\liminf_{L\to\infty} \liminf_{h\downarrow 0} \langle \sigma_0 \cdot e \rangle_{\beta,h}^{\Lambda_L}$? Explain briefly.

iii) Assuming that the limit $m = \lim_{h \downarrow 0} \lim_{L \to \infty} \langle \sigma_0 \cdot e \rangle_{\beta,h}^{\Lambda_L}$ exists, find the limit $\lim_{h \downarrow 0} \lim_{L \to \infty} \langle \sigma_0 \cdot u \rangle_{\beta,h}^{\Lambda_L}$ for any $u \in \mathbb{R}^n$.

(iv) Let μ be the uniform probability measure on $\{\pm 1\}$. Show that $\mu^{\otimes \Lambda_L}$ is reflection positive (through sites) and also through edges when L is odd.

3

(i) For the Ising model on \mathbb{Z} with free boundary conditions, show that for any $\beta > 0$ there is $c(\beta) > 0$ such that $\langle \sigma_0 \sigma_x \rangle_{\beta,0}^{\mathbb{Z}} \leqslant e^{-c(\beta)|x|}$.

(ii) For the Ising model on \mathbb{Z} with plus or minus boundary conditions, show that $\langle \sigma_0 \rangle_{\beta,0}^{\mathbb{Z},\pm} = 0$ for all $\beta > 0$.

(iii) Compute $\langle \sigma_0 \sigma_1 \cdots \sigma_{2022} \rangle_{\beta,0}^{\mathbb{Z},+}$. [You may use results established in the lectures if you cite them carefully.]

(iv) Show that $\langle \sigma_{x_1} \sigma_{x_2} \sigma_{x_3} \sigma_{x_4} \rangle_{\beta,0}^{\mathbb{Z}} \to 0$ as $\min\{|x_i - x_j| : i \neq j\} \to \infty$. [You may use results established in the lectures if you cite them carefully.]

CAMBRIDGE

 $\mathbf{4}$

(a) (i) Let $\Lambda_L \subset \mathbb{Z}^2$ be a square of side length L (approximately) centred at $0 \in \mathbb{Z}^2$, and consider the Ising model on Λ_L with plus boundary conditions outside Λ_L . Show that $\langle \sigma_0 \rangle_{\beta,0}^{\Lambda_L,+}$ is uniformly bounded below when β is sufficiently large.

(ii) Explain how the limit $\langle \sigma_0 \rangle_{\beta,0}^{\mathbb{Z}^2,+}$ is defined and deduce that $\langle \sigma_0 \rangle_{\beta,0}^{\mathbb{Z}^2,+} > 0$ for β sufficiently large.

- (iii) Show that $\langle \sigma_0 \rangle_{\beta,0}^{\mathbb{Z}^3,+} > 0$ for β sufficiently large.
- (b) Consider the φ^4 model on $\Lambda \subset \mathbb{Z}^d$ whose expectation is given by

$$\langle F \rangle \propto \int_{\mathbb{R}^{\Lambda}} e^{-\frac{1}{2}\sum_{xy}(\varphi_x - \varphi_y)^2 - \sum_{x \in \Lambda} \frac{1}{4}g\varphi_x^4 - \sum_{x \in \Lambda} \frac{1}{2}\nu\varphi_x^2} F(\varphi) \, d\varphi,$$

where g > 0 and $\nu \in \mathbb{R}$. Show that if $\nu > 0$ then $\langle \varphi_x \varphi_y \rangle$ decays exponentially. [You may use the random walk representation of the φ^4 model and any results about the decay of the Green's function of a simple random walk on $\Lambda \subset \mathbb{Z}^2$ without proof.]

END OF PAPER