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1 A random variable X with E[X] = 0 is sub-exponential if there are nonnegative
parameters (ν, α) such that

E
[
eλX

]
6 eλ

2ν/2 for all |λ| < 1

α
.

(a) Show that ifX is sub-Gaussian with variance parameter ν, thenX is sub-exponential
with parameters (ν, α) for all α > 0. If X = Z2 − 1 for Z ∼ N (0, 1), show that X
is not sub-Gaussian for any variance parameter ν, but X is (4, 4) sub-exponential.

You may use, without proof, the inequality e−t√
1−2t 6 e2t

2
for all |t| < 1/4.

(b) Suppose X is sub-exponential with parameters (ν, α). Show that

P(X > t) 6
{
e−

t2

2ν if 0 < t 6 ν
α ,

e−
t
2α if t > ν

α .

(c) Suppose {Xi}ni=1 are independent random variables such that Xi is sub-exponential
with parameters (νi, αi). Identify (ν, α) (in terms of {(νi, αi)}ni=1) such that

∑n
i=1Xi

is sub-exponential with parameters (ν, α).

(d) A random variable X with E[X] = 0 and E[X2] = ν is said to satisfy Bernstein’s
condition with parameter b if

|E[Xk]| 6 1

2
k!νbk−2 for all integers k > 2.

Show that if X satisfies Bernstein’s condition with parameter b, then X is sub-
exponential with parameters (2ν, 2b). You may use, without proof, the inequality
1 + x 6 ex for x ∈ R.
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2 A probability distribution p on Rn is said to satisfy a c-Poincaré inequality if,
for X ∼ p, the following inequality holds for all continuously differentiable functions
f : Rn → R:

Var(f(X)) 6 c2E[‖∇f(X)‖2].

(a) Show that the one-dimensional Gaussian N (µ, σ2) satisfies a σ-Poincaré inequality.

(b) Suppose {pi}Ni=1 are probability distributions on Rn such that pi satisfies a ci-
Poincaré inequality. Show that the product distribution p1 ⊗ p2 ⊗ · · · ⊗ pN satisfies
a c-Poincaré inequality with c = max{c1, c2, . . . , cn}.

(c) Let p be a distribution on Rn satisfying a c-Poincaré inequality. Let φ : Rn → R
be a continuously differentiable function satisfying ‖∇φ(x)‖ 6 L for all x ∈ Rn. If
X ∼ p, let the distribution of Y = φ(X) be denoted by q. Show that q satisfies a
cL-Poincaré inequality.

(d) Let p be the uniform distribution on [0, 1]n. Find a constant c such that p satisfies
a c-Poincaré inequality.

You may use any results from the lectures, provided you state them clearly.
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(a) State and prove the Modified Log-Sobolev Inequality (MLSI). You may use the
tensorization property of entropy without proof, and the fact that for a random
variable Y > 0,

Ent(Y ) = inf
u>0

E [Y (log Y − log u)− (Y − u)] .

(b) A non-negative function f : X n → R is called weakly-self-bounding if there exist
functions fi : X n−1 → R such that for all x ∈ X n,

n∑

i=1

(
f(x)− fi(x(i))

)2
6 f(x),

and for all i = 1, . . . , n,

fi(x
(i)) 6 f(x) for all x ∈ X n.

Suppose Z = f(X1, . . . , Xn), where X1, . . . , Xn are independent random variables
on X and f is a weakly-self-bounding function. Show that for 0 6 λ < 2,

logE
[
eλ(Z−EZ)

]
6 λ2E[Z]

(2− λ)
.

You may use, without proof, the inequality φ(−x) 6 x2/2 for x > 0, where
φ(t) = et − t − 1. [Hint: Use the MLSI and rewrite the resulting inequality in
terms of ψ(λ) = logEeλ(Z−EZ) and its derivative ψ′(λ).]
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4 Consider a vector x = (x1, . . . , xn) of n distinct numbers in [0, 1]. The positive
integers 1 6 i1 < i2 < · · · < im 6 n form an increasing sub-sequence if xi1 6 xi2 6 . . . 6
xim . Let L(x) denote the length of the longest increasing sub-sequence.

Let X1, . . . , Xn be independent random variables supported on [0, 1] and let Z =
L(X), where X = (X1, . . . , Xn).

(a) Show that Var(Z) 6 n/4.

(b) Show that for t > 0,

P(Z − EZ > t) 6 e−
2t2

n , and

P(Z − EZ < −t) 6 e−
2t2

n .

(c) Show that Var(Z) 6 E[Z].

(d) Prove that for t > 0,

P(Z − EZ < −t) 6 e
− t2

2E[Z] .

You may use any results from the lectures, provided you state them clearly.

END OF PAPER

Part III, Paper 208


