PAPER 208

CONCENTRATION INEQUALITIES

Before you begin please read these instructions carefully
Candidates have TWO HOURS to complete the written examination.
Attempt no more than THREE questions.
There are FOUR questions in total.
The questions carry equal weight.

STATIONERY REQUIREMENTS	SPECIAL REQUIREMENTS
Cover sheet	None
Treasury tag	
Script paper	
Rough paper	

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 A random variable X with $\mathbb{E}[X]=0$ is sub-exponential if there are nonnegative parameters (ν, α) such that

$$
\mathbb{E}\left[e^{\lambda X}\right] \leqslant e^{\lambda^{2} \nu / 2} \quad \text { for all } \quad|\lambda|<\frac{1}{\alpha} .
$$

(a) Show that if X is sub-Gaussian with variance parameter ν, then X is sub-exponential with parameters (ν, α) for all $\alpha>0$. If $X=Z^{2}-1$ for $Z \sim \mathcal{N}(0,1)$, show that X is not sub-Gaussian for any variance parameter ν, but X is $(4,4)$ sub-exponential. You may use, without proof, the inequality $\frac{e^{-t}}{\sqrt{1-2 t}} \leqslant e^{2 t^{2}}$ for all $|t|<1 / 4$.
(b) Suppose X is sub-exponential with parameters (ν, α). Show that

$$
\mathbb{P}(X \geqslant t) \leqslant \begin{cases}e^{-\frac{t^{2}}{2 \nu}} & \text { if } 0<t \leqslant \frac{\nu}{\alpha} \\ e^{-\frac{t}{2 \alpha}} & \text { if } t>\frac{\nu}{\alpha} .\end{cases}
$$

(c) Suppose $\left\{X_{i}\right\}_{i=1}^{n}$ are independent random variables such that X_{i} is sub-exponential with parameters $\left(\nu_{i}, \alpha_{i}\right)$. Identify (ν, α) (in terms of $\left.\left\{\left(\nu_{i}, \alpha_{i}\right)\right\}_{i=1}^{n}\right)$ such that $\sum_{i=1}^{n} X_{i}$ is sub-exponential with parameters (ν, α).
(d) A random variable X with $\mathbb{E}[X]=0$ and $\mathbb{E}\left[X^{2}\right]=\nu$ is said to satisfy Bernstein's condition with parameter b if

$$
\left|\mathbb{E}\left[X^{k}\right]\right| \leqslant \frac{1}{2} k!\nu b^{k-2} \quad \text { for all integers } \quad k \geqslant 2 .
$$

Show that if X satisfies Bernstein's condition with parameter b, then X is subexponential with parameters $(2 \nu, 2 b)$. You may use, without proof, the inequality $1+x \leqslant e^{x}$ for $x \in \mathbb{R}$.

2 A probability distribution p on \mathbb{R}^{n} is said to satisfy a c-Poincaré inequality if, for $X \sim p$, the following inequality holds for all continuously differentiable functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$:

$$
\operatorname{Var}(f(X)) \leqslant c^{2} \mathbb{E}\left[\|\nabla f(X)\|^{2}\right]
$$

(a) Show that the one-dimensional Gaussian $\mathcal{N}\left(\mu, \sigma^{2}\right)$ satisfies a σ-Poincaré inequality.
(b) Suppose $\left\{p_{i}\right\}_{i=1}^{N}$ are probability distributions on \mathbb{R}^{n} such that p_{i} satisfies a $c_{i}{ }^{-}$ Poincaré inequality. Show that the product distribution $p_{1} \otimes p_{2} \otimes \cdots \otimes p_{N}$ satisfies a c-Poincaré inequality with $c=\max \left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$.
(c) Let p be a distribution on \mathbb{R}^{n} satisfying a c-Poincaré inequality. Let $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a continuously differentiable function satisfying $\|\nabla \phi(x)\| \leqslant L$ for all $x \in \mathbb{R}^{n}$. If $X \sim p$, let the distribution of $Y=\phi(X)$ be denoted by q. Show that q satisfies a $c L$-Poincaré inequality.
(d) Let p be the uniform distribution on $[0,1]^{n}$. Find a constant c such that p satisfies a c-Poincaré inequality.

You may use any results from the lectures, provided you state them clearly.

3
(a) State and prove the Modified Log-Sobolev Inequality (MLSI). You may use the tensorization property of entropy without proof, and the fact that for a random variable $Y \geqslant 0$,

$$
\operatorname{Ent}(Y)=\inf _{u>0} \mathbb{E}[Y(\log Y-\log u)-(Y-u)] .
$$

(b) A non-negative function $f: \mathcal{X}^{n} \rightarrow \mathbb{R}$ is called weakly-self-bounding if there exist functions $f_{i}: \mathcal{X}^{n-1} \rightarrow \mathbb{R}$ such that for all $x \in \mathcal{X}^{n}$,

$$
\sum_{i=1}^{n}\left(f(x)-f_{i}\left(x^{(i)}\right)\right)^{2} \leqslant f(x),
$$

and for all $i=1, \ldots, n$,

$$
f_{i}\left(x^{(i)}\right) \leqslant f(x) \quad \text { for all } x \in \mathcal{X}^{n} .
$$

Suppose $Z=f\left(X_{1}, \ldots, X_{n}\right)$, where X_{1}, \ldots, X_{n} are independent random variables on \mathcal{X} and f is a weakly-self-bounding function. Show that for $0 \leqslant \lambda<2$,

$$
\log \mathbb{E}\left[e^{\lambda(Z-\mathbb{E} Z)}\right] \leqslant \frac{\lambda^{2} \mathbb{E}[Z]}{(2-\lambda)} .
$$

You may use, without proof, the inequality $\phi(-x) \leqslant x^{2} / 2$ for $x \geqslant 0$, where $\phi(t)=e^{t}-t-1$. [Hint: Use the MLSI and rewrite the resulting inequality in terms of $\psi(\lambda)=\log \mathbb{E} e^{\lambda(Z-\mathbb{E} Z)}$ and its derivative $\psi^{\prime}(\lambda)$.]

4 Consider a vector $x=\left(x_{1}, \ldots, x_{n}\right)$ of n distinct numbers in [0, 1]. The positive integers $1 \leqslant i_{1}<i_{2}<\cdots<i_{m} \leqslant n$ form an increasing sub-sequence if $x_{i_{1}} \leqslant x_{i_{2}} \leqslant \ldots \leqslant$ $x_{i_{m}}$. Let $L(x)$ denote the length of the longest increasing sub-sequence.

Let X_{1}, \ldots, X_{n} be independent random variables supported on $[0,1]$ and let $Z=$ $L(X)$, where $X=\left(X_{1}, \ldots, X_{n}\right)$.
(a) Show that $\operatorname{Var}(Z) \leqslant n / 4$.
(b) Show that for $t \geqslant 0$,

$$
\begin{aligned}
\mathbb{P}(Z-\mathbb{E} Z>t) & \leqslant e^{-\frac{2 t^{2}}{n}}, \quad \text { and } \\
\mathbb{P}(Z-\mathbb{E} Z<-t) & \leqslant e^{-\frac{2 t^{2}}{n}}
\end{aligned}
$$

(c) Show that $\operatorname{Var}(Z) \leqslant \mathbb{E}[Z]$.
(d) Prove that for $t \geqslant 0$,

$$
\mathbb{P}(Z-\mathbb{E} Z<-t) \leqslant e^{-\frac{t^{2}}{2 \mathbb{E}[Z]}}
$$

You may use any results from the lectures, provided you state them clearly.

END OF PAPER

