MAMA/208, NST3AS/208, MAAS/208

MAT3 MATHEMATICAL TRIPOS Part III

Thursday, 8 June, 2023 9:00 am to 11:00 am

PAPER 208

CONCENTRATION INEQUALITIES

Before you begin please read these instructions carefully

Candidates have TWO HOURS to complete the written examination.

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

SPECIAL REQUIREMENTS None

Cover sheet Treasury tag Script paper Rough paper

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF CAMBRIDGE

1 A random variable X with $\mathbb{E}[X] = 0$ is *sub-exponential* if there are nonnegative parameters (ν, α) such that

$$\mathbb{E}\left[e^{\lambda X}\right] \leqslant e^{\lambda^2 \nu/2} \quad \text{for all} \quad |\lambda| < \frac{1}{\alpha}.$$

- (a) Show that if X is sub-Gaussian with variance parameter ν , then X is sub-exponential with parameters (ν, α) for all $\alpha > 0$. If $X = Z^2 1$ for $Z \sim \mathcal{N}(0, 1)$, show that X is not sub-Gaussian for any variance parameter ν , but X is (4, 4) sub-exponential. You may use, without proof, the inequality $\frac{e^{-t}}{\sqrt{1-2t}} \leq e^{2t^2}$ for all |t| < 1/4.
- (b) Suppose X is sub-exponential with parameters (ν, α) . Show that

$$\mathbb{P}(X \ge t) \leqslant \begin{cases} e^{-\frac{t^2}{2\nu}} & \text{if } 0 < t \le \frac{\nu}{\alpha}, \\ e^{-\frac{t}{2\alpha}} & \text{if } t > \frac{\nu}{\alpha}. \end{cases}$$

- (c) Suppose $\{X_i\}_{i=1}^n$ are independent random variables such that X_i is sub-exponential with parameters (ν_i, α_i) . Identify (ν, α) (in terms of $\{(\nu_i, \alpha_i)\}_{i=1}^n$) such that $\sum_{i=1}^n X_i$ is sub-exponential with parameters (ν, α) .
- (d) A random variable X with $\mathbb{E}[X] = 0$ and $\mathbb{E}[X^2] = \nu$ is said to satisfy *Bernstein's* condition with parameter b if

$$|\mathbb{E}[X^k]| \leq \frac{1}{2}k!\nu b^{k-2}$$
 for all integers $k \ge 2$.

Show that if X satisfies Bernstein's condition with parameter b, then X is subexponential with parameters $(2\nu, 2b)$. You may use, without proof, the inequality $1 + x \leq e^x$ for $x \in \mathbb{R}$. **2** A probability distribution p on \mathbb{R}^n is said to satisfy a c-Poincaré inequality if, for $X \sim p$, the following inequality holds for all continuously differentiable functions $f: \mathbb{R}^n \to \mathbb{R}$:

$$\operatorname{Var}(f(X)) \leqslant c^2 \mathbb{E}[\|\nabla f(X)\|^2].$$

- (a) Show that the one-dimensional Gaussian $\mathcal{N}(\mu, \sigma^2)$ satisfies a σ -Poincaré inequality.
- (b) Suppose $\{p_i\}_{i=1}^N$ are probability distributions on \mathbb{R}^n such that p_i satisfies a c_i -Poincaré inequality. Show that the product distribution $p_1 \otimes p_2 \otimes \cdots \otimes p_N$ satisfies a *c*-Poincaré inequality with $c = \max\{c_1, c_2, \ldots, c_n\}$.
- (c) Let p be a distribution on \mathbb{R}^n satisfying a c-Poincaré inequality. Let $\phi : \mathbb{R}^n \to \mathbb{R}$ be a continuously differentiable function satisfying $\|\nabla \phi(x)\| \leq L$ for all $x \in \mathbb{R}^n$. If $X \sim p$, let the distribution of $Y = \phi(X)$ be denoted by q. Show that q satisfies a cL-Poincaré inequality.
- (d) Let p be the uniform distribution on $[0, 1]^n$. Find a constant c such that p satisfies a c-Poincaré inequality.

You may use any results from the lectures, provided you state them clearly.

3

(a) State and prove the Modified Log-Sobolev Inequality (MLSI). You may use the tensorization property of entropy without proof, and the fact that for a random variable $Y \ge 0$,

$$\operatorname{Ent}(Y) = \inf_{u>0} \mathbb{E} \left[Y(\log Y - \log u) - (Y - u) \right].$$

(b) A non-negative function $f : \mathcal{X}^n \to \mathbb{R}$ is called *weakly-self-bounding* if there exist functions $f_i : \mathcal{X}^{n-1} \to \mathbb{R}$ such that for all $x \in \mathcal{X}^n$,

$$\sum_{i=1}^{n} \left(f(x) - f_i(x^{(i)}) \right)^2 \leqslant f(x),$$

and for all $i = 1, \ldots, n$,

$$f_i(x^{(i)}) \leq f(x)$$
 for all $x \in \mathcal{X}^n$.

Suppose $Z = f(X_1, \ldots, X_n)$, where X_1, \ldots, X_n are independent random variables on \mathcal{X} and f is a weakly-self-bounding function. Show that for $0 \leq \lambda < 2$,

$$\log \mathbb{E}\Big[e^{\lambda(Z-\mathbb{E}Z)}\Big] \leqslant \frac{\lambda^2 \mathbb{E}[Z]}{(2-\lambda)}.$$

You may use, without proof, the inequality $\phi(-x) \leq x^2/2$ for $x \geq 0$, where $\phi(t) = e^t - t - 1$. [Hint: Use the MLSI and rewrite the resulting inequality in terms of $\psi(\lambda) = \log \mathbb{E}e^{\lambda(Z-\mathbb{E}Z)}$ and its derivative $\psi'(\lambda)$.]

UNIVERSITY OF

4 Consider a vector $x = (x_1, \ldots, x_n)$ of n distinct numbers in [0, 1]. The positive integers $1 \leq i_1 < i_2 < \cdots < i_m \leq n$ form an *increasing sub-sequence* if $x_{i_1} \leq x_{i_2} \leq \ldots \leq x_{i_m}$. Let L(x) denote the length of the longest increasing sub-sequence.

Let X_1, \ldots, X_n be independent random variables supported on [0, 1] and let Z = L(X), where $X = (X_1, \ldots, X_n)$.

- (a) Show that $\operatorname{Var}(Z) \leq n/4$.
- (b) Show that for $t \ge 0$,

$$\mathbb{P}(Z - \mathbb{E}Z > t) \leqslant e^{-\frac{2t^2}{n}}, \quad \text{and}$$
$$\mathbb{P}(Z - \mathbb{E}Z < -t) \leqslant e^{-\frac{2t^2}{n}}.$$

- (c) Show that $\operatorname{Var}(Z) \leq \mathbb{E}[Z]$.
- (d) Prove that for $t \ge 0$,

$$\mathbb{P}(Z - \mathbb{E}Z < -t) \leqslant e^{-\frac{t^2}{2\mathbb{E}[Z]}}.$$

You may use any results from the lectures, provided you state them clearly.

END OF PAPER