MATHEMATICAL TRIPOS Part III

Thursday, 1 June, 2023 1:30 pm to $4: 30 \mathrm{pm}$

PAPER 205

MODERN STATISTICAL METHODS

Before you begin please read these instructions carefully
Candidates have THREE HOURS to complete the written examination.
Attempt no more than FOUR questions.
There are SIX questions in total.
The questions carry equal weight.

STATIONERY REQUIREMENTS
Cover sheet
Treasury tag
Script paper
Rough paper

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 Let \mathcal{X} be a non-empty set. What is a positive definite kernel? In the following, we refer to a positive definite kernel simply as a kernel.
(a) (i) Write down the Gaussian kernel with bandwidth parameter $\sigma^{2}>0$. [You need not show it is a kernel.]
(ii) Suppose $k_{\tau}: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is a kernel for each $\tau \in \mathbb{R}$ and that

$$
k(x, y):=\int_{-\infty}^{\infty} k_{\tau}(x, y) d \tau
$$

is finite whenever $x=y \in \mathcal{X}$. Show that for all $x, y \in \mathcal{X}$,

$$
\int_{-\infty}^{\infty}\left|k_{\tau}(x, y)\right| d \tau<\infty
$$

and that k is a kernel.
(iii) Show that $k: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ given by $k(x, y):=\left(\alpha+\|x-y\|_{2}^{2}\right)^{-1 / 2}$ is a kernel for each $\alpha>0$.
(b) (i) Suppose $\hat{\phi}: \mathbb{R}^{d} \rightarrow[-M, M]$ for $M>0$ is a random feature map and define $k(x, y):=\mathbb{E}[\hat{\phi}(x) \hat{\phi}(y)]$, for $x, y \in \mathbb{R}^{d}$. Show that k is a kernel.
(ii) Show that $k: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ given by $k(x, y):=\exp \left(-\lambda\|x-y\|_{1}\right)$ is a kernel for each $\lambda>0$. [Hint: Use the fact that if V is a standard Cauchy random variable, then $\left.\mathbb{E} \exp (i t V)=\mathbb{E} \cos (t V)=e^{-|t|}\right]$.
[Throughout this question you may use any results or derivations from the course without proof.]
$2 \quad$ Suppose we have m null hypotheses H_{1}, \ldots, H_{m} with associated p-values p_{1}, \ldots, p_{m}. Let $I_{0} \subseteq\{1, \ldots, m\}$ be the set of true nulls. What is the family-wise error rate FWER? Describe the Bonferroni correction and prove that it can be used to control the FWER.

Describe the closed testing procedure, introducing any other tests that are needed in order for it to work. Prove that the closed testing procedure controls the FWER.

Now let w_{1}, \ldots, w_{m} be positive deterministic weights. Show that the procedure (A) that rejects H_{i} if and only if

$$
\frac{p_{i}}{w_{i}} \leqslant \alpha\left(\sum_{i=1}^{m} w_{i}\right)^{-1}
$$

controls the FWER at level α
Define $q_{i}:=p_{i} / w_{i}$ and assume for simplicity that the q_{i} for $i=1, \ldots, m$ are all distinct. Let $q_{(1)}<\cdots<q_{(m)}$ so (i) is the index of the i th smallest value among q_{1}, \ldots, q_{m} (note for instance in the description below, $w_{(1)}$ refers to the weight corresponding to the smallest q_{i}). Prove that the multiple testing procedure (B) consisting of the following steps (starting with Step 1) controls the FWER.

Step i (for $i<m$): If $q_{(i)} \leqslant \alpha / \sum_{j=i}^{m} w_{(j)}$, reject $H_{(i)}$ and go to step $i+1$; otherwise accept $H_{(i)}, \ldots, H_{(m)}$ and stop.
Step m : If $q_{(m)} \leqslant \alpha / w_{(m)}$, reject $H_{(m)}$; otherwise accept $H_{(m)}$.
Explain carefully why procedure (B) is preferable to procedure (A).

3 Suppose data $(X, Y, Z) \in \mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{R}^{n \times p}$ are formed of i.i.d. observations $\left(x_{i}, y_{i}, z_{i}\right) \in \mathbb{R} \times \mathbb{R} \times \mathbb{R}^{p}$ for $i=1, \ldots, n$. We wish to test the null hypothesis $H_{0}: x_{1} \Perp y_{1} \mid z_{1}$ using the test statistic

$$
T:=\sqrt{n} \frac{\tau_{N}}{\tau_{D}}
$$

where

$$
\tau_{N}:=\frac{1}{n} \sum_{i=1}^{n}\left\{x_{i}-\hat{f}\left(z_{i}\right)\right\}\left\{y_{i}-\hat{g}\left(z_{i}\right)\right\}, \quad \tau_{D}^{2}:=\frac{1}{n} \sum_{i=1}^{n}\left[\left\{x_{i}-\hat{f}\left(z_{i}\right)\right\}\left\{y_{i}-\hat{g}\left(z_{i}\right)\right\}\right]^{2}
$$

and estimated regression functions \hat{f} and \hat{g} are formed through regressing each of X and Y on Z respectively. Let $\varepsilon_{i}:=x_{i}-f\left(z_{i}\right)$ and $\xi_{i}:=y_{i}-g\left(z_{i}\right)$ where $f(\cdot)=\mathbb{E}\left(x_{1} \mid z_{1}=\cdot\right)$ and $g(\cdot)=\mathbb{E}\left(y_{1} \mid z_{1}=\cdot\right)$. In all that follows, we assume that H_{0} is true.
(a) Assume that for some $C>0, \mathbb{E}\left(\varepsilon_{1}^{2} \mid z_{1}\right) \leqslant C$ and $\mathbb{E}\left(\xi_{1}^{2} \mid z_{1}\right) \leqslant C$. Show that $\mathbb{E}\left(\varepsilon_{1}^{2} \xi_{1}^{2}\right) \leqslant C^{2}$.
(b) Writing $F_{i}:=f\left(z_{i}\right)-\hat{f}\left(z_{i}\right)$ and $G_{i}:=g\left(z_{i}\right)-\hat{g}\left(z_{i}\right)$, further assume that $\mathbb{E}\left(\frac{1}{n} \sum_{i=1}^{n} F_{i}^{2}\right) \rightarrow 0$ and $\mathbb{E}\left(\frac{1}{n} \sum_{i=1}^{n} G_{i}^{2}\right) \rightarrow 0$ as $n \rightarrow \infty$. Show that

$$
\begin{equation*}
\frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i}^{2} G_{i}^{2} \xrightarrow{p} 0 \tag{1}
\end{equation*}
$$

Show further that

$$
\begin{equation*}
\frac{1}{n} \sum_{i=1}^{n} \xi_{i} \varepsilon_{i}^{2} G_{i} \xrightarrow{p} 0 \tag{2}
\end{equation*}
$$

(c) Now additionally assume

$$
\begin{equation*}
\frac{1}{n} \sum_{i=1}^{n} F_{i}^{2} G_{i}^{2} \xrightarrow{p} 0 \tag{3}
\end{equation*}
$$

and show that

$$
\begin{equation*}
\frac{1}{n} \sum_{i=1}^{n} F_{i} G_{i} \varepsilon_{i} \xi_{i} \xrightarrow{p} 0 \tag{4}
\end{equation*}
$$

Show further that

$$
\begin{equation*}
\frac{1}{n} \sum_{i=1}^{n}\left|\varepsilon_{i} F_{i}\right| G_{i}^{2} \xrightarrow{p} 0 \tag{5}
\end{equation*}
$$

(d) Finally, assuming all of the above and additionally that $\sqrt{n} \tau_{N} \xrightarrow{d} N\left(0, \mathbb{E}\left(\varepsilon_{1}^{2} \xi_{1}^{2}\right)\right)$, show carefully that under H_{0} we have $T \xrightarrow{d} N(0,1)$.

4 What does it mean for a random variable to be sub-Gaussian with parameter $\sigma>0$?
Let $\left(U_{1}, V_{1}\right), \ldots,\left(U_{n}, V_{n}\right)$ be i.i.d. pairs of random variables with mean zero and $\operatorname{Var}\left(U_{1}\right)=\operatorname{Var}\left(V_{1}\right)=1$. Suppose U_{1} and V_{1} are both sub-Gaussian with parameter $\sigma / 4>0$. Stating any results from lectures that you need and writing $U=\left(U_{1}, \ldots, U_{n}\right)^{T}$ and similarly for V, show that for all $t \geqslant 0$,

$$
\mathbb{P}\left(\left|U^{T} V / n-\mathbb{E}\left(U_{1} V_{1}\right)\right| \geqslant t\right) \leqslant 2 \exp \left(-\frac{2 n t^{2}}{\sigma^{2}\left(\sigma^{2}+t\right)}\right)
$$

Define, for an arbitrary symmetric positive semi-definite $\Sigma \in \mathbb{R}^{p \times p}$ and non-empty proper subset $S \subset\{1, \ldots, p\}$ with $s:=|S|$,

$$
\phi_{\Sigma}^{2}:=s \inf _{\substack{\delta \in \mathbb{R}^{p}:\left\|\delta_{S}\right\|_{1}=1,\left\|\delta_{S^{c}}\right\|_{1} \leqslant 3}} \delta^{T} \Sigma \delta .
$$

Prove that if symmetric positive semi-definite $\Theta \in \mathbb{R}^{p \times p}{\operatorname{has~} \max _{j k}\left|\Sigma_{j k}-\Theta_{j k}\right| \leqslant \phi_{\Sigma}^{2} /(32 s), ~}_{\text {, }}$ then $\phi_{\Theta}^{2} \geqslant \phi_{\Sigma}^{2} / 2$.

Now let matrix $X \in \mathbb{R}^{n \times p}$ consist of i.i.d. rows each with variance matrix $\Sigma \in \mathbb{R}^{p \times p}$ where $\Sigma_{j j}=1$ for all $j=1, \ldots, p$. Further suppose that each entry of X is mean zero and sub-Gaussian with parameter $\sigma / 4>0$. Let $\hat{\Sigma} \in \mathbb{R}^{p \times p}$ have entries given by

$$
\hat{\Sigma}_{j k}:=\frac{X_{j}^{T} X_{k}}{\left\|X_{j}\right\|_{2}\left\|X_{k}\right\|_{2}}
$$

where $X_{j} \in \mathbb{R}^{n}$ is the j th column of X. Let $\Sigma \in \mathbb{R}^{p \times p}$ be the covariance matrix of a row of X. Let $t:=\sigma^{2} \sqrt{2 \log (p+1) / n}$ and suppose n and p are such that

$$
t \leqslant \min \left(\frac{\sigma^{2}}{3}, \frac{\phi_{\Sigma}^{2}}{64 s+\phi_{\Sigma}^{2}}\right)
$$

Prove that

$$
\mathbb{P}\left(\phi_{\hat{\Sigma}}^{2} \geqslant \phi_{\Sigma}^{2} / 2\right) \geqslant \frac{p}{p+1} .
$$

5 Let $Y \in \mathbb{R}^{n}$ be a vector of responses and let $X \in \mathbb{R}^{n \times p}$ be a matrix of predictors where each column has been centred and has ℓ_{2}-norm \sqrt{n}.
(a) Write down the optimisation problem solved by the ridge regression estimator $(\hat{\mu}, \hat{\beta}) \in \mathbb{R} \times \mathbb{R}^{p}$ with tuning parameter $\lambda>0$. Show that $\hat{\mu}=\bar{Y}:=\sum_{i=1}^{n} Y_{i} / n$ and $\hat{\beta}=\left(X^{T} X+\lambda I\right)^{-1} X^{T} Y=X^{T}\left(X X^{T}+\lambda I\right)^{-1} Y$.
(b) Prove that if $A \subseteq\{1, \ldots, p\}$ is non-empty, then for each $j \in A$,

$$
X_{j}^{T}\left(X_{A} X_{A}^{T}+\lambda I\right)^{-1} X_{j}<1
$$

(c) Consider the following algorithm for producing a sequence of variable indices j_{1}, \ldots, j_{p}. We initialise $A_{1}=\{1, \ldots, p\}$ and then repeat for $k=1, \ldots, p$:

1. Perform ridge regression but enforcing that all coefficients whose indices are not in A_{k} are set to 0 . This gives estimate $\hat{\beta}^{(k)} \in \mathbb{R}^{p}$ with $\hat{\beta}_{j}^{(k)}=0$ for $j \notin A_{k}$.
2. Set $j_{k}:=\arg \min _{j \in A_{k}}\left|\hat{\beta}_{j}^{(k)}\right|$ and update $A_{k+1}=A_{k} \backslash\left\{j_{k}\right\}$.

Throughout we fix the ridge regression parameter $\lambda>0$ and in step 2 above, we assume the minimiser is unique. Assume that the computational complexity of inverting $M \in \mathbb{R}^{m \times m}$ is $O\left(m^{3}\right)$, and forming $B C$ where $B \in \mathbb{R}^{a \times b}$ and $C \in \mathbb{R}^{b \times c}$ is $O(a b c)$. Show that in the case where $p \geqslant n$, the computational complexity of the algorithm above can be made to be $O\left(p^{2} n\right)$.
[Hint: If $M \in \mathbb{R}^{m \times m}$ is non-singular and $b \in \mathbb{R}^{m}$ satisfies $b^{T} M^{-1} b \neq 1$, then

$$
\left(M-b b^{T}\right)^{-1}=M^{-1}+\frac{M^{-1} b b^{T} M^{-1}}{1-b^{T} M^{-1} b}
$$

$6 \quad$ Let $Y \in \mathbb{R}^{n}$ be a vector of responses and $X \in \mathbb{R}^{n \times p}$ a matrix of predictors. Suppose that the columns of X have been centred and scaled to have ℓ_{2}-norm \sqrt{n}, and that Y is also centred. Consider the linear model (after centring),

$$
Y=X \beta^{0}+\varepsilon-\bar{\varepsilon} \mathbf{1}
$$

where 1 is an n-vector of 1 's and $\bar{\varepsilon}:=\mathbf{1}^{T} \varepsilon / n$. Let $S:=\left\{j: \beta_{j}^{0} \neq 0\right\}, s:=|S| \in[1, p-1]$ and $N:=\{1, \ldots, p\} \backslash S$. Define the Lasso estimator $\hat{\beta}$ of β^{0} with regularisation parameter $\lambda>0$ (here and throughout we suppress the dependence of the Lasso solution on λ).

Suppose $\varepsilon_{1}, \ldots, \varepsilon_{n}$ are independent, mean-zero and sub-Gaussian with parameter $\sigma=1$. Set $\lambda=A \sqrt{\log p / n}$ for $A>0$. Prove that

$$
\mathbb{P}\left(2\left\|X^{T} \varepsilon\right\|_{\infty} / n \leqslant \lambda\right) \geqslant 1-2 p^{-\left(A^{2} / 8-1\right)}
$$

[You may use standard results about sub-Gaussian random variables without proof.]
Write down the KKT conditions for the Lasso.
Suppose $\hat{\Sigma}:=X^{T} X / n$ has the following property: there exists $\psi>0$ such that for all $\delta \in \mathbb{R}^{p}$ with $\left\|\delta_{N}\right\|_{1} \leqslant 3\left\|\delta_{S}\right\|_{1}$,

$$
\psi\left\|\delta_{S}\right\|_{\infty} \leqslant\|\hat{\Sigma} \delta\|_{\infty}
$$

Prove that on an event with probability at least $1-2 p^{-\left(A^{2} / 8-1\right)}$, the following hold:
(a) If $\min _{j \in S}\left|\beta_{j}^{0}\right|>\frac{3 A}{2 \psi} \sqrt{\log (p) / n}$ then $\operatorname{sgn}\left(\hat{\beta}_{S}\right)=\operatorname{sgn}\left(\beta_{S}^{0}\right)$.
(b) $\left\|\hat{\beta}-\beta^{0}\right\|_{1} \leqslant \frac{6 s A}{\psi} \sqrt{\log (p) / n}$.

END OF PAPER

