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1 Let X be a non-empty set. What is a positive definite kernel? In the following, we
refer to a positive definite kernel simply as a kernel.

(a) (i) Write down the Gaussian kernel with bandwidth parameter σ2 > 0. [You
need not show it is a kernel.]

(ii) Suppose kτ : X × X → R is a kernel for each τ ∈ R and that

k(x, y) :=

∫ ∞

−∞
kτ (x, y) dτ

is finite whenever x = y ∈ X . Show that for all x, y ∈ X ,

∫ ∞

−∞
|kτ (x, y)| dτ <∞,

and that k is a kernel.

(iii) Show that k : Rd × Rd → R given by k(x, y) := (α + ‖x − y‖22)−1/2 is a kernel
for each α > 0.

(b) (i) Suppose φ̂ : Rd → [−M,M ] for M > 0 is a random feature map and define
k(x, y) := E[φ̂(x)φ̂(y)], for x, y ∈ Rd. Show that k is a kernel.

(ii) Show that k : Rd × Rd → R given by k(x, y) := exp(−λ‖x − y‖1) is a kernel
for each λ > 0. [Hint: Use the fact that if V is a standard Cauchy random variable, then
E exp(itV ) = E cos(tV ) = e−|t|].

[Throughout this question you may use any results or derivations from the course
without proof.]
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2 Suppose we have m null hypotheses H1, . . . ,Hm with associated p-values p1, . . . , pm.
Let I0 ⊆ {1, . . . ,m} be the set of true nulls. What is the family-wise error rate FWER?
Describe the Bonferroni correction and prove that it can be used to control the FWER.

Describe the closed testing procedure, introducing any other tests that are needed
in order for it to work. Prove that the closed testing procedure controls the FWER.

Now let w1, . . . , wm be positive deterministic weights. Show that the procedure (A)
that rejects Hi if and only if

pi
wi

6 α

(
m∑

i=1

wi

)−1

controls the FWER at level α

Define qi := pi/wi and assume for simplicity that the qi for i = 1, . . . ,m are all
distinct. Let q(1) < · · · < q(m) so (i) is the index of the ith smallest value among q1, . . . , qm
(note for instance in the description below, w(1) refers to the weight corresponding to the
smallest qi). Prove that the multiple testing procedure (B) consisting of the following
steps (starting with Step 1) controls the FWER.

Step i (for i < m): If q(i) 6 α/
∑m

j=iw(j), reject H(i) and go to step i+ 1;

otherwise accept H(i), . . . ,H(m) and stop.

Step m: If q(m) 6 α/w(m), reject H(m); otherwise accept H(m).

Explain carefully why procedure (B) is preferable to procedure (A).
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3 Suppose data (X,Y, Z) ∈ Rn × Rn × Rn×p are formed of i.i.d. observations
(xi, yi, zi) ∈ R×R×Rp for i = 1, . . . , n. We wish to test the null hypothesisH0: x1 ⊥⊥ y1 | z1
using the test statistic

T :=
√
n
τN
τD
,

where

τN :=
1

n

n∑

i=1

{xi − f̂(zi)}{yi − ĝ(zi)}, τ2D :=
1

n

n∑

i=1

[{xi − f̂(zi)}{yi − ĝ(zi)}]2

and estimated regression functions f̂ and ĝ are formed through regressing each of X and
Y on Z respectively. Let εi := xi − f(zi) and ξi := yi − g(zi) where f(·) = E(x1 | z1 = ·)
and g(·) = E(y1 | z1 = ·). In all that follows, we assume that H0 is true.

(a) Assume that for some C > 0, E(ε21 | z1) 6 C and E(ξ21 | z1) 6 C. Show that
E(ε21ξ21) 6 C2.

(b) Writing Fi := f(zi) − f̂(zi) and Gi := g(zi) − ĝ(zi), further assume that
E( 1n

∑n
i=1 F

2
i )→ 0 and E( 1n

∑n
i=1G

2
i )→ 0 as n→∞. Show that

1

n

n∑

i=1

ε2iG
2
i

p→ 0. (1)

Show further that
1

n

n∑

i=1

ξiε
2
iGi

p→ 0. (2)

(c) Now additionally assume

1

n

n∑

i=1

F 2
i G

2
i

p→ 0, (3)

and show that
1

n

n∑

i=1

FiGiεiξi
p→ 0. (4)

Show further that
1

n

n∑

i=1

|εiFi|G2
i

p→ 0. (5)

(d) Finally, assuming all of the above and additionally that
√
nτN

d→ N(0,E(ε21ξ21)),
show carefully that under H0 we have T

d→ N(0, 1).
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4 What does it mean for a random variable to be sub-Gaussian with parameter σ > 0?

Let (U1, V1), . . . , (Un, Vn) be i.i.d. pairs of random variables with mean zero and
Var(U1) = Var(V1) = 1. Suppose U1 and V1 are both sub-Gaussian with parameter
σ/4 > 0. Stating any results from lectures that you need and writing U = (U1, . . . , Un)T

and similarly for V , show that for all t > 0,

P(|UTV/n− E(U1V1)| > t) 6 2 exp

(
− 2nt2

σ2(σ2 + t)

)
.

Define, for an arbitrary symmetric positive semi-definite Σ ∈ Rp×p and non-empty
proper subset S ⊂ {1, . . . , p} with s := |S|,

φ2
Σ := s inf

δ∈Rp:‖δS‖1=1,
‖δSc‖163

δTΣδ.

Prove that if symmetric positive semi-definite Θ ∈ Rp×p has maxjk |Σjk−Θjk| 6 φ2
Σ/(32s),

then φ2
Θ > φ2

Σ/2.

Now let matrix X ∈ Rn×p consist of i.i.d. rows each with variance matrix Σ ∈ Rp×p
where Σjj = 1 for all j = 1, . . . , p. Further suppose that each entry of X is mean zero and
sub-Gaussian with parameter σ/4 > 0. Let Σ̂ ∈ Rp×p have entries given by

Σ̂jk :=
XT
j Xk

‖Xj‖2‖Xk‖2
,

where Xj ∈ Rn is the jth column of X. Let Σ ∈ Rp×p be the covariance matrix of a row
of X. Let t := σ2

√
2 log(p+ 1)/n and suppose n and p are such that

t 6 min

(
σ2

3
,

φ2
Σ

64s+ φ2
Σ

)
.

Prove that
P(φ2

Σ̂
> φ2

Σ/2) > p

p+ 1
.
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5 Let Y ∈ Rn be a vector of responses and let X ∈ Rn×p be a matrix of predictors
where each column has been centred and has `2-norm

√
n.

(a) Write down the optimisation problem solved by the ridge regression estimator
(µ̂, β̂) ∈ R × Rp with tuning parameter λ > 0. Show that µ̂ = Ȳ :=

∑n
i=1 Yi/n and

β̂ = (XTX + λI)−1XTY = XT (XXT + λI)−1Y .

(b) Prove that if A ⊆ {1, . . . , p} is non-empty, then for each j ∈ A,

XT
j (XAX

T
A + λI)−1Xj < 1.

(c) Consider the following algorithm for producing a sequence of variable indices
j1, . . . , jp. We initialise A1 = {1, . . . , p} and then repeat for k = 1, . . . , p:

1. Perform ridge regression but enforcing that all coefficients whose indices are not in

Ak are set to 0. This gives estimate β̂(k) ∈ Rp with β̂
(k)
j = 0 for j /∈ Ak.

2. Set jk := arg minj∈Ak
|β̂(k)j | and update Ak+1 = Ak \ {jk}.

Throughout we fix the ridge regression parameter λ > 0 and in step 2 above, we assume the
minimiser is unique. Assume that the computational complexity of inverting M ∈ Rm×m
is O(m3), and forming BC where B ∈ Ra×b and C ∈ Rb×c is O(abc). Show that in the
case where p > n, the computational complexity of the algorithm above can be made to
be O(p2n).

[Hint: If M ∈ Rm×m is non-singular and b ∈ Rm satisfies bTM−1b 6= 1, then

(M − bbT )−1 = M−1 +
M−1bbTM−1

1− bTM−1b .

]

Part III, Paper 205



7

6 Let Y ∈ Rn be a vector of responses and X ∈ Rn×p a matrix of predictors. Suppose
that the columns of X have been centred and scaled to have `2-norm

√
n, and that Y is

also centred. Consider the linear model (after centring),

Y = Xβ0 + ε− ε̄1,

where 1 is an n-vector of 1’s and ε̄ := 1T ε/n. Let S := {j : β0j 6= 0}, s := |S| ∈ [1, p− 1]

and N := {1, . . . , p}\S. Define the Lasso estimator β̂ of β0 with regularisation parameter
λ > 0 (here and throughout we suppress the dependence of the Lasso solution on λ).

Suppose ε1, . . . , εn are independent, mean-zero and sub-Gaussian with parameter
σ = 1. Set λ = A

√
log p/n for A > 0. Prove that

P(2‖XT ε‖∞/n 6 λ) > 1− 2p−(A
2/8−1).

[You may use standard results about sub-Gaussian random variables without proof.]

Write down the KKT conditions for the Lasso.

Suppose Σ̂ := XTX/n has the following property: there exists ψ > 0 such that for
all δ ∈ Rp with ‖δN‖1 6 3‖δS‖1,

ψ‖δS‖∞ 6 ‖Σ̂δ‖∞.

Prove that on an event with probability at least 1− 2p−(A
2/8−1), the following hold:

(a) If minj∈S |β0j | > 3A
2ψ

√
log(p)/n then sgn(β̂S) = sgn(β0S).

(b) ‖β̂ − β0‖1 6 6sA
ψ

√
log(p)/n.

END OF PAPER
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