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(a) Give the definitions of a compact H-hull A, its mapping-out function gA and its
half-plane capacity hcap(A).

(b) If D is the open unit disk, show that the density p(z, eiθ), θ ∈ [0, π], for the first exit
distribution (with respect to Lebesgue measure) of a complex Brownian motion on
H ∩ ∂D starting from z ∈ H \ D satisfies

p(z, eiθ) =
2

π

Im(z)

|z|2 sin(θ)(1 +O(|z|−1)) as z →∞.

[You may use without proof that f(z) = z+ 1
z is a conformal transformation mapping

H \ D onto H. Also, you may use results from lectures provided you state them
clearly.]

(c) Show that if A is a compact H-hull with A ⊆ D ∩H then

hcap(A) =
2

π

∫ π

0
Eeiθ [Im(Bτ )] sin(θ)dθ,

where τ is the first time that a complex Brownian motion B exits H \ A and Ez
denotes the expectation with respect to the law under which B starts from z.

(d) (i) Consider the rectangle Ar = [−r, r] × (0, 1] in H. Show that there exists
constant c > 0 such that hcap(Ar) 6 cr for all r > 1.

(ii) Find a sequence of compact H-hulls (An) such that diam(An) → ∞ but
hcap(An)→ 0 as n→∞.
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(a) Suppose that γ is an SLEκ in H from 0 to∞ for κ > 0. State the conformal Markov
property for the curve γ.

(b) Let X be a Bessel process with dimension d > 0, starting from x > 0. Show that if
d < 2, then Xt hits 0 almost surely. Show also that if d > 2, then Xt does not hit 0
almost surely.

(c) Fix κ ∈ (4, 8) and let γ be an SLEκ in H from 0 to ∞. Let (gt) be the family of
conformal maps solving the chordal Loewner equation associated with γ. For each
x ∈ R \ {0}, let V x

t = gt(x)− Ut for t < τx, where τx = inf{t > 0 : V x
t = 0} and Ut

is the driving function of γ.

(i) Fix r > 1 and for each 0 6 t < τ1, set Zt = log
(
V r
t −V 1

t

V 1
t

)
and consider the

time-changed process Z̃t = Zσ(t), where σ(t) = inf
{
u > 0 :

∫ u
0

1
(V 1

s )2
ds = t

}
.

Find the stochastic differential equation satisfied by Z̃t. [You may use Itô’s
formula. You may also assume without proof that σ(∞) = τ1 almost surely.]

(ii) Deduce that the following is true. Fix x ∈ R \ {0}. Then γ does not hit x
almost surely. [Hint: You may use without proof that supt>0(Bt+at) is finite
almost surely, where Bt is a standard one-dimensional Brownian motion with
B0 = 0 and a < 0, and that τ1 <∞ almost surely. Examine the behaviour of
P[τ1 = τ1+ε] as ε → 0. You may also use results from lectures provided you
state them clearly.]
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(a) Specify (without proof) for which range of κ values SLEκ is simple, self-intersecting
but not space-filling, and is space-filling.

(b) Prove that SLEκ is simple for the range of values that you have stated in part
(a) that it is simple. [You may use properties of Bessel processes proved in class
provided you state them clearly.]

(c) Let X be a Bessel process with dimension d > 0, starting from x > 0. Fix r > 0
and set Yt = rXt/r2 for t > 0. Show that (Yt) has the law of a Bessel process of
dimension d, starting from rx.

(d) Fix κ ∈ (4, 8) and let (Kt)t>0 be the family of compact H-hulls corresponding to an
SLEκ process γ in H from 0 to ∞.

(i) Fix ε ∈ (0, 1). Show that there is a finite and positive constant r0 > 0 such
that for all t > 0

P[{z ∈ H : |z| < r0
√
t} ⊆ Kt] > 1− ε.

[Hint: You may use without proof that almost surely there is a (random) r > 0
such that {z ∈ H : |z| < r} ⊆ K1.]

(ii) Show that γ is almost surely transient, i.e., P[lim inft→∞ |γ(t)| = ∞] = 1.
[Hint:You may assume without proof that almost surely γ((t,∞)) ⊆ H \Kt

for each t > 0.]
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4 We assume throughout that D ⊆ C is a simply connected domain distinct from C
and ∅.

(a) Give the definitions of:

(i) The space C∞0 (D).

(ii) The space H1
0 (D).

(iii) The Gaussian free field (GFF) h on D.

(b) State and prove the Markov property of the GFF h on D.

(c) (i) Give the definition of the Green’s function GD(·, ·) on D.

(ii) Explain how the L2 inner product (h, φ) is defined for φ ∈ C∞0 (D) and a
GFF h on D, and show that it is a mean-zero normal random variable with
variance

∫
D

∫
D φ(x)GD(x, y)φ(y)dxdy. [You may assume without proof that

−2π∆−1φ(x) =
∫
DGD(x, y)φ(y)dy.]

(d) Let ρ be a non-negative Borel measure with compact support in D so that∫
D

∫
DGD(x, y)ρ(dx)ρ(dy) <∞. Show that (h, ρ) is a well-defined random variable

in L2 where h is a GFF on D. Show further that (h, ρ) is a Gaussian random
variable with zero mean and variance

∫
D

∫
DGD(x, y)ρ(dx)ρ(dy).

END OF PAPER
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