MAMA/203, NST3AS/203, MAAS/203

MAT3 MATHEMATICAL TRIPOS Part III

Friday, 9 June, 2023 9:00 am to 11:00 am

PAPER 203

SCHRAMM-LOEWNER EVOLUTIONS

Before you begin please read these instructions carefully

Candidates have TWO HOURS to complete the written examination.

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

SPECIAL REQUIREMENTS None

Cover sheet Treasury tag Script paper Rough paper

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

 $\mathbf{1}$

- (a) Give the definitions of a compact \mathbb{H} -hull A, its mapping-out function g_A and its half-plane capacity hcap(A).
- (b) If \mathbb{D} is the open unit disk, show that the density $p(z, e^{i\theta}), \theta \in [0, \pi]$, for the first exit distribution (with respect to Lebesgue measure) of a complex Brownian motion on $\mathbb{H} \cap \partial \mathbb{D}$ starting from $z \in \mathbb{H} \setminus \overline{\mathbb{D}}$ satisfies

$$p(z, e^{i\theta}) = \frac{2}{\pi} \frac{\text{Im}(z)}{|z|^2} \sin(\theta) (1 + O(|z|^{-1})) \text{ as } z \to \infty.$$

[You may use without proof that $f(z) = z + \frac{1}{z}$ is a conformal transformation mapping $\mathbb{H} \setminus \overline{\mathbb{D}}$ onto \mathbb{H} . Also, you may use results from lectures provided you state them clearly.]

(c) Show that if A is a compact \mathbb{H} -hull with $A \subseteq \overline{\mathbb{D}} \cap \mathbb{H}$ then

$$\operatorname{hcap}(A) = \frac{2}{\pi} \int_0^{\pi} \mathbb{E}_{e^{i\theta}} \left[\operatorname{Im}(B_{\tau}) \right] \sin(\theta) d\theta,$$

where τ is the first time that a complex Brownian motion B exits $\mathbb{H} \setminus A$ and \mathbb{E}_z denotes the expectation with respect to the law under which B starts from z.

- (d) (i) Consider the rectangle $A_r = [-r, r] \times (0, 1]$ in \mathbb{H} . Show that there exists constant c > 0 such that $hcap(A_r) \leq cr$ for all $r \geq 1$.
 - (ii) Find a sequence of compact \mathbb{H} -hulls (A_n) such that $\operatorname{diam}(A_n) \to \infty$ but $\operatorname{hcap}(A_n) \to 0$ as $n \to \infty$.

 $\mathbf{2}$

- (a) Suppose that γ is an SLE_{κ} in \mathbb{H} from 0 to ∞ for $\kappa > 0$. State the conformal Markov property for the curve γ .
- (b) Let X be a Bessel process with dimension d > 0, starting from x > 0. Show that if d < 2, then X_t hits 0 almost surely. Show also that if d > 2, then X_t does not hit 0 almost surely.
- (c) Fix $\kappa \in (4,8)$ and let γ be an SLE_{κ} in \mathbb{H} from 0 to ∞ . Let (g_t) be the family of conformal maps solving the chordal Loewner equation associated with γ . For each $x \in \mathbb{R} \setminus \{0\}$, let $V_t^x = g_t(x) U_t$ for $t < \tau_x$, where $\tau_x = \inf\{t \ge 0 : V_t^x = 0\}$ and U_t is the driving function of γ .
 - (i) Fix r > 1 and for each $0 \leq t < \tau_1$, set $Z_t = \log\left(\frac{V_t^r V_t^1}{V_t^1}\right)$ and consider the time-changed process $\tilde{Z}_t = Z_{\sigma(t)}$, where $\sigma(t) = \inf\left\{u \ge 0 : \int_0^u \frac{1}{(V_s^1)^2} ds = t\right\}$. Find the stochastic differential equation satisfied by \tilde{Z}_t . [You may use Itô's formula. You may also assume without proof that $\sigma(\infty) = \tau_1$ almost surely.]
 - (ii) Deduce that the following is true. Fix $x \in \mathbb{R} \setminus \{0\}$. Then γ does not hit x almost surely. [Hint: You may use without proof that $\sup_{t\geq 0}(B_t + at)$ is finite almost surely, where B_t is a standard one-dimensional Brownian motion with $B_0 = 0$ and a < 0, and that $\tau_1 < \infty$ almost surely. Examine the behaviour of $\mathbb{P}[\tau_1 = \tau_{1+\epsilon}]$ as $\epsilon \to 0$. You may also use results from lectures provided you state them clearly.]

3

- (a) Specify (without proof) for which range of κ values SLE_{κ} is simple, self-intersecting but not space-filling, and is space-filling.
- (b) Prove that SLE_{κ} is simple for the range of values that you have stated in part (a) that it is simple. [You may use properties of Bessel processes proved in class provided you state them clearly.]
- (c) Let X be a Bessel process with dimension d > 0, starting from x > 0. Fix r > 0 and set $Y_t = rX_{t/r^2}$ for $t \ge 0$. Show that (Y_t) has the law of a Bessel process of dimension d, starting from rx.
- (d) Fix $\kappa \in (4, 8)$ and let $(K_t)_{t \ge 0}$ be the family of compact \mathbb{H} -hulls corresponding to an SLE_{κ} process γ in \mathbb{H} from 0 to ∞ .
 - (i) Fix $\epsilon \in (0, 1)$. Show that there is a finite and positive constant $r_0 > 0$ such that for all $t \ge 0$

$$\mathbb{P}[\{z \in \mathbb{H} : |z| < r_0 \sqrt{t}\} \subseteq K_t] \ge 1 - \epsilon.$$

[*Hint:* You may use without proof that almost surely there is a (random) r > 0 such that $\{z \in \mathbb{H} : |z| < r\} \subseteq K_1$.]

(ii) Show that γ is almost surely transient, i.e., $\mathbb{P}[\liminf_{t\to\infty} |\gamma(t)| = \infty] = 1$. [Hint: You may assume without proof that almost surely $\gamma((t,\infty)) \subseteq \mathbb{H} \setminus K_t$ for each $t \ge 0$.] 4 We assume throughout that $D \subseteq \mathbb{C}$ is a simply connected domain distinct from \mathbb{C} and \emptyset .

- (a) Give the definitions of:
 - (i) The space $C_0^{\infty}(D)$.
 - (ii) The space $H_0^1(D)$.
 - (iii) The Gaussian free field (GFF) h on D.
- (b) State and prove the Markov property of the GFF h on D.
- (c) (i) Give the definition of the Green's function $G_D(\cdot, \cdot)$ on D.
 - (ii) Explain how the L^2 inner product (h, ϕ) is defined for $\phi \in C_0^{\infty}(D)$ and a GFF h on D, and show that it is a mean-zero normal random variable with variance $\int_D \int_D \phi(x) G_D(x, y) \phi(y) dx dy$. [You may assume without proof that $-2\pi \Delta^{-1} \phi(x) = \int_D G_D(x, y) \phi(y) dy$.]
- (d) Let ρ be a non-negative Borel measure with compact support in D so that $\int_D \int_D G_D(x, y)\rho(dx)\rho(dy) < \infty$. Show that (h, ρ) is a well-defined random variable in L^2 where h is a GFF on D. Show further that (h, ρ) is a Gaussian random variable with zero mean and variance $\int_D \int_D G_D(x, y)\rho(dx)\rho(dy)$.

END OF PAPER