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1 Let B be a standard Brownian motion with B0 = 0. For each ε > 0, let
fε(x) =

√
ε2 + x2.

(a) Give the definition of a semimartingale and ucp convergence.

(b) Use Itô’s formula to show that

fε(Bt) = ε+

∫ t

0

Bs√
ε2 +B2

s

dBs +
1

2

∫ t

0

ε2

(ε2 +B2
s )3/2

ds.

(c) Prove that fε(Bt) converges ucp to |Bt| as ε→ 0.

(d) Prove that

∫ t

0

Bs√
ε2 +B2

s

dBs →
∫ t

0
sign(Bs)dBs ucp as ε→ 0.

(e) Deduce that
1

2

∫ t

0

ε2

(ε2 +B2
s )3/2

ds

converges ucp as ε→ 0.

(f) Show that |Bt| is a semimartingale.

2 Let (Ω,F , (F)t>0,P) be a filtered probability space satisfying the usual conditions.

(a) Give the definition of the previsible σ-algebra P.

(b) Give the definition of a simple process. Let ν be a finite measure on (Ω,F) and prove
that the collection of simple processes is dense in L2(P, ν).

(c) Prove that P is the smallest σ-algebra which makes all left-continuous adapted
processes measurable.

(d) Suppose that X is a previsible process and f is a Borel function. Prove that f(X) is
a previsible process.

(e) Prove that every deterministic càdlàg function is previsible.

(f) Give an example of a càdlàg process which is not previsible.
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(a) Define the stochastic exponential E(M) of M ∈ Mc,loc with M0 = 0, show that
E(M) ∈Mc,loc, and show that E(M) is also a supermartingale.

(b) Suppose that B is a standard Brownian motion with B0 = 0. For each a > 0, let
Ta = inf{t > 0 : Bt + t = a}. Show that E[exp(Ta/2)] = exp(a).

[Hint: use Girsanov’s theorem.]

(c) For each b < 0, let Sb = inf{t > 0 : Bt − t = b}. Deduce from part (b) that
E[exp(Sb/2)] = exp(−b) and hence show that if R is any stopping time for the filtration
generated by B then E[exp(BR∧Sb

−R ∧ Sb/2)] = 1.

[Hint: show that E(B)t∧Sb
is a UI martingale.]

(d) Show that if M ∈ Mc,loc with M0 = 0, T > 0, and E[exp([M ]T /2)] <∞ then E(MT )
is a martingale.

[Hint: consider E[1Sb6[M ]t exp(b + Sb/2)] + E[1[M ]t<Sb
exp(Mt − [M ]t/2)] where B is

defined by Bs = Mτs and τs = inf{t > 0 : [M ]t > s}.]

4 Let (Ω,F , (Ft),P) be a filtered probability space satisfying the usual conditions.

(a) Suppose that X = X0 + M + A is a semimartingale where [M ] is strictly increasing
with P[[M ]∞ =∞] = 1. For each s > 0 let τs = inf{t > 0 : [M ]t = s}, F̃s = Fτs , and
X̃s = Xτs . Show that X̃ is a continuous semimartingale adapted to (F̃s).
[You may use results proved in the course provided you state them clearly.]

(b) Use Itô’s formula to find the semimartingale decomposition of Zt = exp(Bt+at) where
B is a standard Brownian motion and a ∈ R.

(c) Recall that a d-dimensional Bessel process is given by the maximal local solution
(X, T ) in U = (0,∞) of the SDE

dXt =
d− 1

2

1

Xt
dt+ dBt.

Show that Z from part (b) is, up to a time change you should specify, given by a
d-dimensional Bessel process. Derive the relationship between d and a.

(d) Using the previous part, show that P[T <∞] = 1 if and only if d < 2. [You may use
without proof that limt→∞(Bt + at) = −∞ if and only if a < 0.]

(e) Show that if (X, T ) is a d-dimensional Bessel process and α > 0 then (Xα, T ) is a
d′-dimensional process, up to a time change. Derive the relationship between d and d′.
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5 Let v ∈ C1((0, 1)) ∩ L1((0, 1)). Consider the SDE

dXt =
1

2
v(Xt)dt+ dBt with X0 ∈ (0, 1). (1)

(a) Show that (1) has a pathwise unique maximal local solution (X, T ) in U = (0, 1) where
T = inf{t > 0 : Xt ∈ {0, 1}}. [You may use results proved in the course provided you
state them clearly.]

(b) Define V : (0, 1)→ R and ψ : (0, 1)→ R by

V (t) =

∫ t

0
v(s)ds and ψ(x) =

∫ x

0
e−V (u)du.

Show that ψ(Xt) is a continuous local martingale.

(c) Show that P[T <∞, XT = 0] > 0.

(d) Prove that for each t > 0 the law of Xt1{t<T } is absolutely continuous with respect
to Lebesgue measure on (0, 1).

(e) Let p(t, x, ·) be the Radon-Nikodym derivative of the law of law of Xt1{t<T } with
respect to Lebesgue measure on (0, 1) when X0 = x. Show that p satisfies the equation

∂tp(t, x, y) =
1

2
∂2xp(t, x, y) +

1

2
v(x)∂xp(t, x, y).

[You may assume without proof that p(·, ·, y) ∈ C1,2(R+ × (0, 1)) for each fixed
y ∈ (0, 1).]

6

(a) Suppose that D ⊆ R2 is a bounded domain. Suppose that u ∈ C(D)∩C2(D) satisfies

∆u = 0 on D and u = f on ∂D

where f ∈ C(∂D). Let B be a standard Brownian motion and let τ = inf{t > 0 : Bt /∈
D}. Show that

u(x) = Ex[f(Bτ )] for each x ∈ D.

(b) Prove or disprove that the assertion of part (a) holds if we replace the assumption
that D is bounded with P[τ <∞] = 1.

(c) Suppose that u is a bounded Borel function on R2 such that the following is true. For
a standard Brownian motion B and every x ∈ R2 we have that u(Bt + x) ∈ Mc,loc.
Prove that u is constant.

END OF PAPER

Part III, Paper 202


