MAMA/202, NST3AS/202, MAAS/202

MAT3 MATHEMATICAL TRIPOS Part III

Tuesday, 13 June, 2023 $\,$ 9:00 am to 12:00 pm $\,$

PAPER 202

STOCHASTIC CALCULUS AND APPLICATIONS

Before you begin please read these instructions carefully

Candidates have THREE HOURS to complete the written examination.

Attempt no more than **FOUR** questions. There are **SIX** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

SPECIAL REQUIREMENTS None

Cover sheet Treasury tag Script paper Rough paper

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 Let *B* be a standard Brownian motion with $B_0 = 0$. For each $\epsilon > 0$, let $f_{\epsilon}(x) = \sqrt{\epsilon^2 + x^2}$.

- (a) Give the definition of a semimartingale and ucp convergence.
- (b) Use Itô's formula to show that

$$f_{\epsilon}(B_t) = \epsilon + \int_0^t \frac{B_s}{\sqrt{\epsilon^2 + B_s^2}} dB_s + \frac{1}{2} \int_0^t \frac{\epsilon^2}{(\epsilon^2 + B_s^2)^{3/2}} ds.$$

- (c) Prove that $f_{\epsilon}(B_t)$ converges ucp to $|B_t|$ as $\epsilon \to 0$.
- (d) Prove that

$$\int_0^t \frac{B_s}{\sqrt{\epsilon^2 + B_s^2}} dB_s \to \int_0^t \operatorname{sign}(B_s) dB_s \quad \text{ucp} \quad \text{as} \quad \epsilon \to 0.$$

(e) Deduce that

$$\frac{1}{2}\int_0^t \frac{\epsilon^2}{(\epsilon^2+B_s^2)^{3/2}}ds$$

converges ucp as $\epsilon \to 0$.

- (f) Show that $|B_t|$ is a semimartingale.
- **2** Let $(\Omega, \mathcal{F}, (\mathcal{F})_{t \ge 0}, \mathbb{P})$ be a filtered probability space satisfying the usual conditions.
- (a) Give the definition of the previsible σ -algebra \mathcal{P} .
- (b) Give the definition of a *simple process*. Let ν be a finite measure on (Ω, \mathcal{F}) and prove that the collection of simple processes is dense in $L^2(\mathcal{P}, \nu)$.
- (c) Prove that \mathcal{P} is the smallest σ -algebra which makes all left-continuous adapted processes measurable.
- (d) Suppose that X is a previsible process and f is a Borel function. Prove that f(X) is a previsible process.
- (e) Prove that every deterministic càdlàg function is previsible.
- (f) Give an example of a càdlàg process which is not previsible.

3

- (a) Define the stochastic exponential $\mathcal{E}(M)$ of $M \in \mathcal{M}_{c,loc}$ with $M_0 = 0$, show that $\mathcal{E}(M) \in \mathcal{M}_{c,loc}$, and show that $\mathcal{E}(M)$ is also a supermartingale.
- (b) Suppose that B is a standard Brownian motion with B₀ = 0. For each a > 0, let T_a = inf{t≥0: B_t + t = a}. Show that E[exp(T_a/2)] = exp(a).
 [Hint: use Girsanov's theorem.]
- (c) For each b < 0, let $S_b = \inf\{t \ge 0 : B_t t = b\}$. Deduce from part (b) that $\mathbb{E}[\exp(S_b/2)] = \exp(-b)$ and hence show that if R is any stopping time for the filtration generated by B then $\mathbb{E}[\exp(B_{R \land S_b} R \land S_b/2)] = 1$.

[Hint: show that $\mathcal{E}(B)_{t \wedge S_b}$ is a UI martingale.]

(d) Show that if $M \in \mathcal{M}_{c,loc}$ with $M_0 = 0, T > 0$, and $\mathbb{E}[\exp([M]_T/2)] < \infty$ then $\mathcal{E}(M^T)$ is a martingale.

[Hint: consider $\mathbb{E}[\mathbf{1}_{S_b \leqslant [M]_t} \exp(b + S_b/2)] + \mathbb{E}[\mathbf{1}_{[M]_t < S_b} \exp(M_t - [M]_t/2)]$ where B is defined by $B_s = M_{\tau_s}$ and $\tau_s = \inf\{t \ge 0 : [M]_t > s\}$.]

- 4 Let $(\Omega, \mathcal{F}, (\mathcal{F}_t), \mathbb{P})$ be a filtered probability space satisfying the usual conditions.
- (a) Suppose that $X = X_0 + M + A$ is a semimartingale where [M] is strictly increasing with $\mathbb{P}[[M]_{\infty} = \infty] = 1$. For each $s \ge 0$ let $\tau_s = \inf\{t \ge 0 : [M]_t = s\}, \widetilde{\mathcal{F}}_s = \mathcal{F}_{\tau_s}$, and $\widetilde{X}_s = X_{\tau_s}$. Show that \widetilde{X} is a continuous semimartingale adapted to $(\widetilde{\mathcal{F}}_s)$.

[You may use results proved in the course provided you state them clearly.]

- (b) Use Itô's formula to find the semimartingale decomposition of $Z_t = \exp(B_t + at)$ where B is a standard Brownian motion and $a \in \mathbb{R}$.
- (c) Recall that a *d*-dimensional Bessel process is given by the maximal local solution (X, \mathcal{T}) in $U = (0, \infty)$ of the SDE

$$dX_t = \frac{d-1}{2} \frac{1}{X_t} dt + dB_t.$$

Show that Z from part (b) is, up to a time change you should specify, given by a d-dimensional Bessel process. Derive the relationship between d and a.

- (d) Using the previous part, show that $\mathbb{P}[\mathcal{T} < \infty] = 1$ if and only if d < 2. [You may use without proof that $\lim_{t\to\infty} (B_t + at) = -\infty$ if and only if a < 0.]
- (e) Show that if (X, \mathcal{T}) is a *d*-dimensional Bessel process and $\alpha > 0$ then $(X^{\alpha}, \mathcal{T})$ is a d'-dimensional process, up to a time change. Derive the relationship between d and d'.

 $\mathbf{5}$

4

Let $v \in C^1((0,1)) \cap L^1((0,1))$. Consider the SDE

$$dX_t = \frac{1}{2}v(X_t)dt + dB_t$$
 with $X_0 \in (0, 1).$ (1)

- (a) Show that (1) has a pathwise unique maximal local solution (X, \mathcal{T}) in U = (0, 1) where $\mathcal{T} = \inf\{t \ge 0 : X_t \in \{0, 1\}\}$. [You may use results proved in the course provided you state them clearly.]
- (b) Define $V: (0,1) \to \mathbb{R}$ and $\psi: (0,1) \to \mathbb{R}$ by

$$V(t) = \int_0^t v(s)ds$$
 and $\psi(x) = \int_0^x e^{-V(u)}du$.

Show that $\psi(X_t)$ is a continuous local martingale.

- (c) Show that $\mathbb{P}[\mathcal{T} < \infty, X_{\mathcal{T}} = 0] > 0.$
- (d) Prove that for each t > 0 the law of $X_t \mathbf{1}_{\{t < \mathcal{T}\}}$ is absolutely continuous with respect to Lebesgue measure on (0, 1).
- (e) Let $p(t, x, \cdot)$ be the Radon-Nikodym derivative of the law of law of $X_t \mathbf{1}_{\{t < \mathcal{T}\}}$ with respect to Lebesgue measure on (0, 1) when $X_0 = x$. Show that p satisfies the equation

$$\partial_t p(t, x, y) = \frac{1}{2} \partial_x^2 p(t, x, y) + \frac{1}{2} v(x) \partial_x p(t, x, y).$$

[You may assume without proof that $p(\cdot, \cdot, y) \in C^{1,2}(\mathbb{R}_+ \times (0, 1))$ for each fixed $y \in (0, 1)$.]

6

(a) Suppose that $D \subseteq \mathbb{R}^2$ is a bounded domain. Suppose that $u \in C(\overline{D}) \cap C^2(D)$ satisfies

 $\Delta u = 0$ on D and u = f on ∂D

where $f \in C(\partial D)$. Let B be a standard Brownian motion and let $\tau = \inf\{t \ge 0 : B_t \notin D\}$. Show that

$$u(x) = \mathbb{E}_x[f(B_\tau)]$$
 for each $x \in D$.

- (b) Prove or disprove that the assertion of part (a) holds if we replace the assumption that D is bounded with $\mathbb{P}[\tau < \infty] = 1$.
- (c) Suppose that u is a bounded Borel function on \mathbb{R}^2 such that the following is true. For a standard Brownian motion B and every $x \in \mathbb{R}^2$ we have that $u(B_t + x) \in \mathcal{M}_{c,loc}$. Prove that u is constant.

END OF PAPER