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Let Z be a random variable with |Z| 6 1. Let (Fn) be a filtration and let
F∞ = σ(∪nFn).

(a) Show that (E[Z | Fn]) is a martingale with respect to (Fn).

(b) Prove that E[Z | Fn]→ E[Z | F∞] as n→∞ almost surely and in L1.
[You may assume the almost sure martingale convergence theorem.]

(c) Let (Xn)n be a sequence of random variables with |Xn| 6 1 for all n and Xn → X
as n→∞ almost surely and in L1. Prove that

E[Xn | Fn]→ E[X | F∞] as n→∞ almost surely and in L1.

[Hint: Define Zn = supm>n |Xm−X| and show first that Zn → 0 almost surely and in L1.]

2

State the almost sure martingale convergence theorem. Suppose that (Xn)n∈N is a
nonnegative bounded supermartingale. Show that

E
[

lim
n→∞

Xn

]
= lim

n→∞
E[Xn] .

Suppose that X is a discrete time simple symmetric random walk in Z3, i.e. Xn =
∑n

i=1 ξi,
where (ξi) is an i.i.d. sequence of random variables with distribution

P(ξ1 = ei) = P(ξ1 = −ei) =
1

6
∀ i ∈ {1, 2, 3},

where ei is the i-th standard basis vector. Let (Fn) be its natural filtration.

(a) For every x ∈ Z3 define

v(x) = Px(∃ n > 0 : Xn = 0) .

Prove that (v(Xn)) is a supermartingale with respect to the filtration (Fn).

(b) Prove that v(Xn)→ 0 as n→∞ almost surely.

[You may assume that P0(Xn visits 0 infinitely often) = 0. You may use theorems
from the course as long as they are stated clearly.]
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Let (Xi)i∈N be i.i.d. random variables distributed according to the Poisson distri-
bution with parameter 1. Set for every n > 1

Sn =

n∑

i=1

Xi and Yn =
Sn − n√

n
.

(a) Prove that Sn has the Poisson distribution with parameter n. Writing x− =
max(−x, 0) prove that for all a > 0

P
(
Y −n > a

)
6 1

a2
.

(b) Let Y be a standard normal random variable. Show that (Y −n ) converges weakly
to Y −.

(c) Show that E[Y −n ]→ E[Y −] as n→∞.

[You may use the Cauchy Schwartz inequality E[XY ] 6
√

E[X2]E[Y 2] for random
variables X,Y without proof.]

(d) Deduce Stirling’s formula, i.e. that as n→∞

n! ∼
(n
e

)n
·
√
2πn,

where we write an ∼ bn to mean an/bn → 1 as n→∞.
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Let (Bt) be a standard Brownian motion in 1 dimension and let (Ft) be its natural
filtration. For λ ∈ R and t > 0 we define

Mλ(t) = exp(λBt − λ2t/2).

(a) Prove that for every λ ∈ R the process (Mλ(t))t>0 is a martingale with respect
to the filtration (Ft).

(b) Prove carefully that for all n ∈ N the process (dnMλ(t)/dλn)t>0 is also a
martingale with respect to (Ft)t.

(c) For every x ∈ R denote by τx the first hitting time of x, i.e.

τx = inf{t > 0 : Bt = x}.

Let a, b > 0. By differentiating Mλ(t) in λ three times and then setting λ = 0 or otherwise
prove that

E[τb | τb < τ−a] =
b2 + 2ab

3
.

You should justify carefully each application of the optional stopping theorem.

5

Let B be a standard Brownian motion in one dimension. Set

Mt = max
06s6t

Bs, ∀ t > 0.

(a) State the reflection principle for Brownian motion and then deduce from it that
for all t > 0

Mt
d
= |Bt|.

(b) Show that almost surely there is a unique time M∗ ∈ [0, 1] such that

BM∗ = max
06s61

Bs.

(c) Let M∗ be as in part (b). Prove that M∗ has the arcsine distribution, i.e. that
for all s ∈ [0, 1]

P(M∗ 6 s) =
2

π
arcsin(

√
s).
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Let B = (Bt)t>0 be a standard Brownian motion in d > 1 dimensions and let ∆ be
the Laplacian operator, i.e. if f : Rd → R is a function, then

∆f(x) =
d∑

i=1

∂2
i f(x)

∂x2i
.

(a) Suppose d = 1. Prove that almost surely

lim sup
t→∞

Bt =∞ and lim inf
t→∞

Bt = −∞.

Deduce that B visits 0 infinitely often almost surely.

[You may use Bluementhal’s 0-1 law without proof provided you state it clearly.]

From now on we take d > 2.

(b) Let B̃ be an independent Brownian motion started from x ∈ Rd. Define a
sequence of stopping times as follows: set T0 = 0 and inductively for i 6 d set

Ti = inf{s > Ti−1 : Bi
s = B̃i

s}.

In words, Ti is the first time the i-th coordinates become equal after the first time the
i− 1-st coordinates become equal. Prove that Td <∞ almost surely.

(c) Suppose that f : Rd → R is a bounded harmonic function, i.e. ∆f(x) = 0 for all
x. Prove that f is constant.

[Hint: Use a stopping time to construct on the same probability space a pair of
Brownian motions starting from two different points that eventually agree.]
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