MAMA/201, NST3AS/201, MAAS/201

MAT3 MATHEMATICAL TRIPOS Part III

Monday, 5 June, 2023 $\quad 1{:}30~\mathrm{pm}$ to $4{:}30~\mathrm{pm}$

PAPER 201

ADVANCED PROBABILITY

Before you begin please read these instructions carefully

Candidates have THREE HOURS to complete the written examination.

Attempt no more than **FOUR** questions. There are **SIX** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

SPECIAL REQUIREMENTS None

Cover sheet Treasury tag Script paper Rough paper

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1

Let Z be a random variable with $|Z| \leq 1$. Let (\mathcal{F}_n) be a filtration and let $\mathcal{F}_{\infty} = \sigma(\cup_n \mathcal{F}_n)$.

(a) Show that $(\mathbb{E}[Z | \mathcal{F}_n])$ is a martingale with respect to (\mathcal{F}_n) .

(b) Prove that $\mathbb{E}[Z \mid \mathcal{F}_n] \to \mathbb{E}[Z \mid \mathcal{F}_\infty]$ as $n \to \infty$ almost surely and in \mathcal{L}^1 .

[You may assume the almost sure martingale convergence theorem.]

(c) Let $(X_n)_n$ be a sequence of random variables with $|X_n| \leq 1$ for all n and $X_n \to X$ as $n \to \infty$ almost surely and in \mathcal{L}^1 . Prove that

$$\mathbb{E}[X_n \mid \mathcal{F}_n] \to \mathbb{E}[X \mid \mathcal{F}_\infty]$$
 as $n \to \infty$ almost surely and in \mathcal{L}^1 .

[Hint: Define $Z_n = \sup_{m \ge n} |X_m - X|$ and show first that $Z_n \to 0$ almost surely and in \mathcal{L}^1 .]

$\mathbf{2}$

State the almost sure martingale convergence theorem. Suppose that $(X_n)_{n \in \mathbb{N}}$ is a nonnegative bounded supermartingale. Show that

$$\mathbb{E}\left[\lim_{n\to\infty}X_n\right] = \lim_{n\to\infty}\mathbb{E}[X_n]\,.$$

Suppose that X is a discrete time simple symmetric random walk in \mathbb{Z}^3 , i.e. $X_n = \sum_{i=1}^n \xi_i$, where (ξ_i) is an i.i.d. sequence of random variables with distribution

$$\mathbb{P}(\xi_1 = e_i) = \mathbb{P}(\xi_1 = -e_i) = \frac{1}{6} \quad \forall \ i \in \{1, 2, 3\},$$

where e_i is the *i*-th standard basis vector. Let (\mathcal{F}_n) be its natural filtration.

(a) For every $x \in \mathbb{Z}^3$ define

$$v(x) = \mathbb{P}_x(\exists \ n \ge 0 : X_n = 0).$$

Prove that $(v(X_n))$ is a supermartingale with respect to the filtration (\mathcal{F}_n) .

(b) Prove that $v(X_n) \to 0$ as $n \to \infty$ almost surely.

[You may assume that $\mathbb{P}_0(X_n \text{ visits } 0 \text{ infinitely often}) = 0$. You may use theorems from the course as long as they are stated clearly.]

3

Let $(X_i)_{i\in\mathbb{N}}$ be i.i.d. random variables distributed according to the Poisson distribution with parameter 1. Set for every $n \ge 1$

$$S_n = \sum_{i=1}^n X_i$$
 and $Y_n = \frac{S_n - n}{\sqrt{n}}$.

(a) Prove that S_n has the Poisson distribution with parameter n. Writing $x^- = \max(-x,0)$ prove that for all a > 0

$$\mathbb{P}(Y_n^- \geqslant a) \leqslant \frac{1}{a^2}.$$

(b) Let Y be a standard normal random variable. Show that (Y_n^-) converges weakly to Y^- .

(c) Show that $\mathbb{E}[Y_n^-] \to \mathbb{E}[Y^-]$ as $n \to \infty$.

[You may use the Cauchy Schwartz inequality $\mathbb{E}[XY] \leq \sqrt{\mathbb{E}[X^2]\mathbb{E}[Y^2]}$ for random variables X, Y without proof.]

(d) Deduce Stirling's formula, i.e. that as $n \to \infty$

$$n! \sim \left(\frac{n}{e}\right)^n \cdot \sqrt{2\pi n},$$

where we write $a_n \sim b_n$ to mean $a_n/b_n \to 1$ as $n \to \infty$.

 $\mathbf{4}$

Let (B_t) be a standard Brownian motion in 1 dimension and let (\mathcal{F}_t) be its natural filtration. For $\lambda \in \mathbb{R}$ and $t \ge 0$ we define

$$M_{\lambda}(t) = \exp(\lambda B_t - \lambda^2 t/2).$$

(a) Prove that for every $\lambda \in \mathbb{R}$ the process $(M_{\lambda}(t))_{t \ge 0}$ is a martingale with respect to the filtration (\mathcal{F}_t) .

(b) Prove carefully that for all $n \in \mathbb{N}$ the process $(d^n M_\lambda(t)/d\lambda^n)_{t\geq 0}$ is also a martingale with respect to $(\mathcal{F}_t)_t$.

(c) For every $x \in \mathbb{R}$ denote by τ_x the first hitting time of x, i.e.

$$\tau_x = \inf\{t \ge 0 : B_t = x\}.$$

Let a, b > 0. By differentiating $M_{\lambda}(t)$ in λ three times and then setting $\lambda = 0$ or otherwise prove that

$$\mathbb{E}[\tau_b \mid \tau_b < \tau_{-a}] = \frac{b^2 + 2ab}{3}.$$

You should justify carefully each application of the optional stopping theorem.

 $\mathbf{5}$

Let B be a standard Brownian motion in one dimension. Set

$$M_t = \max_{0 \leqslant s \leqslant t} B_s, \quad \forall \ t \ge 0.$$

(a) State the reflection principle for Brownian motion and then deduce from it that for all $t \geqslant 0$

$$M_t \stackrel{d}{=} |B_t|.$$

(b) Show that almost surely there is a unique time $M^* \in [0, 1]$ such that

$$B_{M^*} = \max_{0 \leqslant s \leqslant 1} B_s.$$

(c) Let M^* be as in part (b). Prove that M^* has the arcsine distribution, i.e. that for all $s \in [0, 1]$

$$\mathbb{P}(M^* \leqslant s) = \frac{2}{\pi} \arcsin(\sqrt{s}).$$

6

Let $B = (B_t)_{t \ge 0}$ be a standard Brownian motion in $d \ge 1$ dimensions and let Δ be the Laplacian operator, i.e. if $f : \mathbb{R}^d \to \mathbb{R}$ is a function, then

$$\Delta f(x) = \sum_{i=1}^{d} \frac{\partial_i^2 f(x)}{\partial x_i^2}.$$

(a) Suppose d = 1. Prove that almost surely

$$\limsup_{t \to \infty} B_t = \infty \quad \text{and} \quad \liminf_{t \to \infty} B_t = -\infty.$$

Deduce that B visits 0 infinitely often almost surely.

[You may use Bluementhal's 0-1 law without proof provided you state it clearly.]

From now on we take $d \ge 2$.

(b) Let \widetilde{B} be an independent Brownian motion started from $x \in \mathbb{R}^d$. Define a sequence of stopping times as follows: set $T_0 = 0$ and inductively for $i \leq d$ set

$$T_i = \inf\{s \ge T_{i-1} : B_s^i = \tilde{B}_s^i\}.$$

In words, T_i is the first time the *i*-th coordinates become equal after the first time the i-1-st coordinates become equal. Prove that $T_d < \infty$ almost surely.

(c) Suppose that $f : \mathbb{R}^d \to \mathbb{R}$ is a bounded harmonic function, i.e. $\Delta f(x) = 0$ for all x. Prove that f is constant.

[Hint: Use a stopping time to construct on the same probability space a pair of Brownian motions starting from two different points that eventually agree.]

END OF PAPER