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1 Scattering bubbles for L2 critical defocusing (NLS)
In this question we work in R2 with complex valued functions. We define Σ =

H1 ∩ {xu ∈ L2} equipped with the norm

‖v‖2Σ =

∫

R2

(
|∇v|2 + |x|2v2

)
dx.

We fix once and for all a constant w > 2 and define

J(u) =
1

2
‖v‖2Σ −

w

2

∫

R2

|v|2 +
1

4

∫

R2

|v|4.

We recall that the L2 critical defocusing (NLS) in R2 is

i∂tu+ ∆u− u|u|2 = 0.

1) Let ψ(x) = e−
|x|2
2 , compute (−∆ + |x|2)ψ.

2) Show that
∀ε > 0, ∃Cε such that ‖v‖2L2 6 ε‖v‖2Σ + Cε‖v‖2L4

and conclude that
J ≡ inf

u∈Σ
J(u) > −∞.

3) Show that J < 0.

4) Show that J is attained, and that there exists a non trivial minimizer v with v > 0.
Derive the equation satisfied by v.

5) Let v > 0 be the above minimizer. Let y = x
λ(t) . Show that

u(t, x) =
1

λ(t)

(
v(y)e−i

b(t)|y|2
4

)
eiγ(t)

solves the L2 critical defocusing (NLS) equation as long as the parameters satisfy
the dynamical system

∣∣ ds
dt = 1

λ2
, db

ds + b2 = −4, b = − 1
λ
dλ
ds ,

dγ
ds = −w (0.1)

6) Solve (0.1) with data λ(t = 0) = 1, b(t = 0) = 0, γ(t = 0) = 0. (Hint: compute
d
ds

(√
b2+4
λ

)
).

7) Let S(t) be the free Schrödinger semi group. Show using Strichartz that the sequence
of functions

t 7→
∫ t

−1
S(−s)

(
u(s, y)|u(s, y)|2

)
ds

has a strong L2 limit as t→ +∞ and conclude that there exists u∞ ∈ L2 such that

u− S(t)u∞ → 0 in L2 as t→ +∞.
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2 Morawetz estimates for the defocusing wave equation
In this question, we work in R3 with real valued radially symmetric functions. We

pick an odd integer p > 1 and let u(t, r) solve the defocusing wave equation

∂ttu−∆u+ u|u|p−1 = 0, x ∈ R3.

We assume that the solution is global in time, C∞ smooth in both (t, x) with the global
Sobolev regularity (u(t, ·), ∂tu(t, ·)) ∈ Ḣ1 × L2. In all questions, integration by parts in
space can be performed without boundary terms, no need for any justification.

1) Show that there exists a universal constant C > 0 such that

∀u ∈ H1,

∫

R3

u2

|x|2dx 6 C

∫

R3

|∇u|2.

2) Show that the total energy

E =

∫

R3

[
(∂tu)2 + |∇u|2

2
+
|u|p+1

p+ 1

]
dx

is invariant in time.

3) Let a smooth ψ(r), show the Morawetz identity

− d

dt

{∫

R3

∂tu

[
∆ψ

2
u+∇ψ · ∇u

]
dx

}
=

∫

R3

[
ψ′′|∇u|2dx− 1

4
(∆2ψ)u2 +

p− 1

2(p+ 1)
(∆ψ)|u|p+1

]
dx.

4) Let ψ′(r) = r. What is −∆2ψ in D′(R3)? Conclude that this choice of ψ implies
∫ +∞

0

∫

R3

|u|p+1

|x| dxdt 6 CE(u0). (0.1)

Can this equation admit finite energy stationary solutions?

5) Let w = ru, compute the equation satisfied by w.

6) Let a smooth ψ(r) and define

Jψ(t) =

∫

r>0
ψ

[
1

2
(∂tw + ∂rw)2 +

1

p+ 1

|w|p+1

rp−1

]
dr

compute dJψ
dt .

7) Conclude that the modified Morawetz holds

d

dt

{∫

R3

ψ

[
1

2

(
∂tu+ ∂ru+

u

r

)2
+

1

p+ 1
|u|p+1

]
dx

}

= −1

2

∫ ∫

R3

ψ′
[
∂tu+ ∂ru+

u

r

]2
dx+

1

p+ 1

∫

R3

|u|p+1

[
ψ′ − (p− 1)

ψ

r

]
dx

and give another proof of (0.1) using a suitable ψ(r).
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