MAMA/144, NST3AS/144, MAAS/144

MAT3 MATHEMATICAL TRIPOS Part III

Tuesday, 6 June, 2023 $-1:30~\mathrm{pm}$ to 3:30 pm

PAPER 144

MODEL THEORY

Before you begin please read these instructions carefully

Candidates have TWO HOURS to complete the written examination.

Attempt **ALL** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

S SPECIAL REQUIREMENTS None

Cover sheet Treasury tag Script paper Rough paper

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1

(a) Let M be an L-structure. Let $p(\bar{x})$ be a type in L(M) that is finitely satisfiable in M. Show that $p(\bar{x})$ is realised in some N such that $M \preccurlyeq N$.

(b) Let T be a complete theory with no finite models and a monster model \mathcal{U} . For $\mathcal{D} \subseteq \mathcal{U}$ and $f \in \operatorname{Aut}(\mathcal{U})$, define $f[\mathcal{D}] = \{f(d) : d \in \mathcal{D}\}$ and $O(\mathcal{D}) = \{f[\mathcal{D}] : f \in \operatorname{Aut}(\mathcal{U})\}$.

Suppose $\mathcal{D} = \phi(\mathcal{U}, \bar{b})$ for some $\bar{b} \in \mathcal{U}^{|\bar{b}|}$. Show that if $O(\mathcal{D})$ is infinite, then $|O(\mathcal{D})| = |\mathcal{U}|$.

2 Let $T_{\rm rg}$ be the theory of the random graph in the language $L_{\rm gph} = \{R\}$, where R is a binary relation symbol. Let \mathcal{U} be the monster model of $T_{\rm rg}$.

(a) Show that every partial embedding $p: \mathcal{U} \to \mathcal{U}$ is elementary.

(b) Hence, or otherwise, show that $T_{\rm rg}$ has quantifier elimination. [You may assume that a formula $\phi(\bar{x})$ is preserved by all partial embeddings if and only if it is equivalent to a quantifier-free formula.]

(c) Let $A \subseteq \mathcal{U}$ be a small subset of \mathcal{U} . Define $\operatorname{acl}(A)$ and $\operatorname{dcl}(A)$.

(d) Show that, for A as in part (c), acl(A) = dcl(A).

3 Let *T* be a complete theory with no finite models.

(a) Define what it means for a model N of T to be saturated, universal and homogeneous.

(b) Show that if N is universal and homogeneous then N is saturated. [You may assume any characterization of saturation, provided you state it clearly and correctly].

(c) Let N be an uncountable saturated model of T (for example a monster model), and let the formula $\phi(x, y)$ define an equivalence relation E on N. Suppose that every model $M \preccurlyeq N$ such that |M| < |N| intersects every equivalence class of E. Show that E has finitely many equivalence classes.

4 Let T be a strongly minimal theory with monster model \mathcal{U} .

(a) Let A and B be independent subsets of \mathcal{U} . Show that every bijection $f: A \to B$ is an elementary map.

(b) Assume that the language of T is countable. Show that every model (that is, every $M \leq \mathcal{U}$ such that $|M| < |\mathcal{U}|$) is homogeneous. [You may assume standard properties of algebraic closure].

END OF PAPER

Part III, Paper 144