MAMA/142, NST3AS/142, MAMA/142

MAT3 MATHEMATICAL TRIPOS Part III

Tuesday, 6 June, 2023 $\quad 1{:}30~\mathrm{pm}$ to $4{:}30~\mathrm{pm}$

PAPER 142

CHARACTERISTIC CLASSES AND K-THEORY

Before you begin please read these instructions carefully

Candidates have THREE HOURS to complete the written examination.

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

SPECIAL REQUIREMENTS None

Cover sheet Treasury tag Script paper Rough paper

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1

Let $\pi : E \to X$ be a *d*-dimensional real vector bundle over a compact Hausdorff space. Using the projective bundle formula, define the Stiefel–Whitney classes $w_i(E) \in$ $H^i(X; \mathbb{Z}/2)$. If $\pi' : E' \to X$ is another real vector bundle, prove that

$$w_k(E \oplus E') = \sum_{i+j=k} w_i(E) \cdot w_j(E').$$

If $\pi: L \to X$ and $\pi': L' \to X$ are real line bundles, prove that

$$w_1(L \otimes L') = w_1(L) + w_1(L').$$

[You may use any description of the cohomology of \mathbb{RP}^n .]

Let $\pi : E \to M$ be a *d*-dimensional real vector bundle with inner product over a smooth manifold M, $p : \mathbb{P}(E) \to M$ denote its associated projectivisation, $L_E \to \mathbb{P}(E)$ denote the tautological line bundle, and ω_E denote the orthogonal complement of $L_E \subset p^*E$. You may assume that $\mathbb{P}(E)$ is again a smooth manifold, and that its tangent bundle may be described as

$$T\mathbb{P}(E) \cong p^*TM \oplus \text{Hom}(L_E, \omega_E).$$

When $M = \mathbb{RP}^n$ and E is the direct sum of k copies of the tautological line bundle $\gamma_{\mathbb{R}}^{1,n+1}$, determine the ring $H^*(\mathbb{P}(E);\mathbb{Z}/2)$ and hence describe the total Stiefel–Whitney class

$$w(T\mathbb{P}(E)) \in H^*(\mathbb{P}(E); \mathbb{Z}/2).$$

 $\mathbf{2}$

What is the *Bott isomorphism*? Using the Bott isomorphism, explain how to calculate $\widetilde{K}^i(S^d)$ for all $d \ge 0$ and all $i \in \mathbb{Z}$.

If Y is a finite CW-complex which only has even-dimensional cells, prove that $K^{-1}(Y) = 0$ and $K^{0}(Y)$ is a free abelian group, and hence prove that there is an isomorphism

$$K^0(Y) \otimes K^i(X) \xrightarrow{\sim} K^i(Y \times X).$$

If $f: Z \to Z$ is a continuous map, let $T_f := [0, 1] \times Z / \sim$ denote its mapping torus, where $(1, z) \sim (0, f(z))$. If Z is a compact Hausdorff space such that $K^{-1}(Z) = 0$, prove that $K^0(T_f)$ is isomorphic to

$$\{x \in K^0(Z) : f^*(x) = x\}.$$

For the map $f : \mathbb{CP}^2 \times \mathbb{CP}^2 \to \mathbb{CP}^2 \times \mathbb{CP}^2$ given by $(x, y) \mapsto (y, x)$, determine $K^0(T_f)$ as an abelian group.

[You may use any description of the K-theory of \mathbb{CP}^2 without proof, and any results from the course provided that they are clearly stated.]

3

State the splitting principle in cohomology for complex vector bundles. Define the Chern character

$$ch: K^0(X) \longrightarrow H^{ev}(X; \mathbb{Q})$$

and prove carefully that it is a ring homomorphism. [You may use any results from the theory of symmetric polynomials provided they are clearly stated, as well as the formula for the first Chern class of a tensor product of line bundles.]

Explain why $ch: \widetilde{K}^0(S^{2n}) \to \widetilde{H}^{ev}(S^{2n}; \mathbb{Q})$ has image inside $\widetilde{H}^{ev}(S^{2n}; \mathbb{Z})$, and hence prove that for any complex vector bundle $\pi: E \to S^{2n}$, the integer $\langle c_n(E), [S^{2n}] \rangle$ is divisible by (n-1)!. [Hint: You should use a relation between the power sum symmetric polynomials and the elementary symmetric polynomials.] $\mathbf{4}$

Let $\pi : E \to X$ be a *d*-dimensional complex vector bundle. Denote by $\lambda_E \in \widetilde{K}^0(Th(E))$ the *K*-theory Thom class, and by $e^K(E) = \Lambda_{-1}(\overline{E})$ its associated Euler class. Assuming that the Thom class induces a Thom isomorphism, derive the Gysin sequence for the sphere bundle $p : \mathbb{S}(E) \to X$.

Writing $Y := \mathbb{S}(\gamma_{\mathbb{C}}^{1,n+1} \oplus \gamma_{\mathbb{C}}^{1,n+1})$, calculate $K^{-1}(Y)$ as an abelian group.

[You may use any description of the K-theory of \mathbb{CP}^n .]

Define the cannibalistic class $\rho^k(E)$ in terms of the Adams operation ψ^k , and explain why it satisfies $\rho^k(E \oplus E') = \rho^k(E) \cdot \rho^k(E')$ when $\pi' : E' \to X$ is another complex vector bundle. Derive a formula for $\rho^k(E)$ when E is a complex line bundle.

[You may use any properties of the Thom class and the Adams operations, provided they are clearly stated.]

For the map $p_! : K^{-1}(\mathbb{S}(E)) \to K^0(X)$ in the Gysin sequence, explain how to evaluate $p_!(\psi^k(x))$ in terms of $\psi^k(p_!(x))$.

Hence determine the action of ψ^2 on $K^{-1}(Y)$ in an appropriate basis.

END OF PAPER