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Let π : E → X be a d-dimensional real vector bundle over a compact Hausdorff
space. Using the projective bundle formula, define the Stiefel–Whitney classes wi(E) ∈
H i(X;Z/2). If π′ : E′ → X is another real vector bundle, prove that

wk(E ⊕ E′) =
∑

i+j=k

wi(E) · wj(E
′).

If π : L→ X and π′ : L′ → X are real line bundles, prove that

w1(L⊗ L′) = w1(L) + w1(L
′).

[You may use any description of the cohomology of RPn.]

Let π : E → M be a d-dimensional real vector bundle with inner product
over a smooth manifold M , p : P(E) → M denote its associated projectivisation,
LE → P(E) denote the tautological line bundle, and ωE denote the orthogonal complement
of LE ⊂ p∗E. You may assume that P(E) is again a smooth manifold, and that its tangent
bundle may be described as

TP(E) ∼= p∗TM ⊕Hom(LE , ωE).

When M = RPn and E is the direct sum of k copies of the tautological line bundle
γ1,n+1
R , determine the ring H∗(P(E);Z/2) and hence describe the total Stiefel–Whitney

class
w(TP(E)) ∈ H∗(P(E);Z/2).
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What is the Bott isomorphism? Using the Bott isomorphism, explain how to
calculate K̃i(Sd) for all d > 0 and all i ∈ Z.

If Y is a finite CW-complex which only has even-dimensional cells, prove that
K−1(Y ) = 0 and K0(Y ) is a free abelian group, and hence prove that there is an
isomorphism

K0(Y )⊗Ki(X)
∼−→ Ki(Y ×X).

If f : Z → Z is a continuous map, let Tf := [0, 1]× Z/ ∼ denote its mapping torus,
where (1, z) ∼ (0, f(z)). If Z is a compact Hausdorff space such that K−1(Z) = 0, prove
that K0(Tf ) is isomorphic to

{x ∈ K0(Z) : f∗(x) = x}.

For the map f : CP2×CP2 → CP2×CP2 given by (x, y) 7→ (y, x), determine K0(Tf )
as an abelian group.

[You may use any description of the K-theory of CP2 without proof, and any results
from the course provided that they are clearly stated.]

3

State the splitting principle in cohomology for complex vector bundles. Define the
Chern character

ch : K0(X) −→ Hev(X;Q)

and prove carefully that it is a ring homomorphism. [You may use any results from the
theory of symmetric polynomials provided they are clearly stated, as well as the formula
for the first Chern class of a tensor product of line bundles.]

Explain why ch : K̃0(S2n)→ H̃ev(S2n;Q) has image inside H̃ev(S2n;Z), and hence
prove that for any complex vector bundle π : E → S2n, the integer 〈cn(E), [S2n]〉 is
divisible by (n − 1)!. [Hint: You should use a relation between the power sum symmetric
polynomials and the elementary symmetric polynomials.]

Part III, Paper 142 [TURN OVER]



4

4

Let π : E → X be a d-dimensional complex vector bundle. Denote by λE ∈
K̃0(Th(E)) the K-theory Thom class, and by eK(E) = Λ−1(E) its associated Euler class.
Assuming that the Thom class induces a Thom isomorphism, derive the Gysin sequence
for the sphere bundle p : S(E)→ X.

Writing Y := S(γ1,n+1
C ⊕ γ1,n+1

C ), calculate K−1(Y ) as an abelian group.

[You may use any description of the K-theory of CPn.]

Define the cannibalistic class ρk(E) in terms of the Adams operation ψk, and explain
why it satisfies ρk(E ⊕ E′) = ρk(E) · ρk(E′) when π′ : E′ → X is another complex vector
bundle. Derive a formula for ρk(E) when E is a complex line bundle.

[You may use any properties of the Thom class and the Adams operations, provided
they are clearly stated.]

For the map p! : K−1(S(E)) → K0(X) in the Gysin sequence, explain how to
evaluate p!(ψ

k(x)) in terms of ψk(p!(x)).

Hence determine the action of ψ2 on K−1(Y ) in an appropriate basis.
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