MAMA/137, NST3AS/137, MAAS/137

MAT3 MATHEMATICAL TRIPOS Part III

Tuesday, 13 June, 2023 $\quad 1:30~\mathrm{pm}$ to 4:30 pm

PAPER 137

MODULAR FORMS

Before you begin please read these instructions carefully

Candidates have THREE HOURS to complete the written examination.

Attempt **ALL** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

SPECIAL REQUIREMENTS None

Cover sheet Treasury tag Script paper Rough paper

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

 $\mathbf{1}$

Let $k \ge 4$ be an even integer.

(a) Show that any element $\tau \in \mathfrak{h}$ is conjugate, under the action of $\Gamma(1)$, to an element of the set

$$\mathcal{F} = \{ \tau \in \mathfrak{h} \mid \operatorname{Re}(\tau) \in [-1/2, 1/2], \operatorname{Im}(\tau) \ge \sqrt{3}/2 \}.$$

(b) Show that if $f(\tau) = \sum_{n \ge 1} a_n q^n \in S_k(\Gamma(1))$, then there is a constant C > 0 such that $|a_n| \le C n^{k/2}$ for all $n \ge 1$.

(c) Show conversely that if $g(\tau) = \sum_{n \ge 0} b_n q^n \in M_k(\Gamma(1))$ and there is a constant C > 0 such that $|b_n| \le C n^{k/2}$ for all $n \ge 1$, then $g \in S_k(\Gamma(1))$. [You may use the formula

$$G_k(\tau) = 2\zeta(k) + \frac{(2\pi i)^k}{(k-1)!} \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^n$$

for the q-expansion of $G_k(\tau)$.]

$\mathbf{2}$

Let $k \in \mathbb{Z}$, and let p be a prime number.

(a) Define what is meant by a modular function and a modular form of weight k and level $\Gamma(1)$.

(b) Let f be a modular function of weight k and level $\Gamma(1)$ which is holomorphic in \mathfrak{h} . Show that the function $T_p(f):\mathfrak{h}\to\mathbb{C}$, defined by

$$T_p(f) = p^{k-1}f(p\tau) + \frac{1}{p}\sum_{b=0}^{p-1}f((\tau+b)/p),$$

is a modular function of weight k and level $\Gamma(1)$ which is holomorphic in \mathfrak{h} .

(c) Let f be a modular function of weight k and level $\Gamma(1)$ which is holomorphic in \mathfrak{h} . Suppose that the \mathbb{C} -vector space spanned by the functions

$$f, T_p(f), T_p^2(f), \dots, T_p^n(f), \dots \ (n \ge 1)$$

is finite-dimensional. Show that f is a modular form.

3

(a) Let p be a prime number, and define

$$\Gamma_1(p) = \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in \Gamma(1) \mid a \equiv 1 \mod p, c \equiv 0 \mod p \right\}.$$

Compute the number of cusps of $\Gamma_1(p)$.

(b) Let $j(\tau) = E_4(\tau)^3 / \Delta(\tau)$, $f(\tau) = j(\tau) / j(2\tau)$. Show that f is a modular function of weight 0 and level $\Gamma_1(2)$.

(c) For each cusp $\Gamma_1(2) \cdot z$ of $\Gamma_1(2)$, decide (with proof) whether $f(\tau)$ is holomorphic at $\Gamma_1(2) \cdot z$.

[You may assume any necessary properties of the modular forms E_4, Δ , providing you state them precisely.]

4

Let $k \in 2\mathbb{Z}$.

(a) Define

$$\Gamma_{\infty} = \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in \Gamma(1) \mid c = 0 \right\},\$$

and fix $s \in \mathbb{C}$ with $\operatorname{Re}(s) > (2-k)/2$. For $\tau \in \mathfrak{h}$, define

$$E_{k,s}(\tau) = \sum_{\gamma \in \Gamma_{\infty} \setminus \Gamma(1)} \operatorname{Im}(\gamma \tau)^{s} j(\gamma, \tau)^{-k}.$$

Show that $E_{k,s}(\tau)$ is absolutely and locally uniformly convergent in \mathfrak{h} .

(b) Let $f \in M_k(\Gamma(1))$. Show that the function $f(\tau)\overline{E_{k,s}(\tau)}\operatorname{Im}(\tau)^k$ is invariant under the (weight 0) action of $\Gamma(1)$.

END OF PAPER