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Let k > 4 be an even integer.

(a) Show that any element τ ∈ h is conjugate, under the action of Γ(1), to an
element of the set

F = {τ ∈ h | Re(τ) ∈ [−1/2, 1/2], Im(τ) >
√

3/2}.

(b) Show that if f(τ) =
∑

n>1 anq
n ∈ Sk(Γ(1)), then there is a constant C > 0 such

that |an| 6 Cnk/2 for all n > 1.

(c) Show conversely that if g(τ) =
∑

n>0 bnq
n ∈ Mk(Γ(1)) and there is a constant

C > 0 such that |bn| 6 Cnk/2 for all n > 1, then g ∈ Sk(Γ(1)). [You may use the formula

Gk(τ) = 2ζ(k) +
(2πi)k

(k − 1)!

∞∑

n=1

σk−1(n)qn

for the q-expansion of Gk(τ).]

2

Let k ∈ Z, and let p be a prime number.

(a) Define what is meant by a modular function and a modular form of weight k
and level Γ(1).

(b) Let f be a modular function of weight k and level Γ(1) which is holomorphic in
h. Show that the function Tp(f) : h → C, defined by

Tp(f) = pk−1f(pτ) +
1

p

p−1∑

b=0

f((τ + b)/p),

is a modular function of weight k and level Γ(1) which is holomorphic in h.

(c) Let f be a modular function of weight k and level Γ(1) which is holomorphic in
h. Suppose that the C-vector space spanned by the functions

f, Tp(f), T 2
p (f), . . . , Tn

p (f), . . . (n > 1)

is finite-dimensional. Show that f is a modular form.
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(a) Let p be a prime number, and define

Γ1(p) =

{(
a b
c d

)
∈ Γ(1) | a ≡ 1 mod p, c ≡ 0 mod p

}
.

Compute the number of cusps of Γ1(p).

(b) Let j(τ) = E4(τ)3/∆(τ), f(τ) = j(τ)/j(2τ). Show that f is a modular function
of weight 0 and level Γ1(2).

(c) For each cusp Γ1(2) ·z of Γ1(2), decide (with proof) whether f(τ) is holomorphic
at Γ1(2) · z.

[You may assume any necessary properties of the modular forms E4,∆, providing
you state them precisely.]

4

Let k ∈ 2Z.

(a) Define

Γ∞ =

{(
a b
c d

)
∈ Γ(1) | c = 0

}
,

and fix s ∈ C with Re(s) > (2− k)/2. For τ ∈ h, define

Ek,s(τ) =
∑

γ∈Γ∞\Γ(1)

Im(γτ)sj(γ, τ)−k.

Show that Ek,s(τ) is absolutely and locally uniformly convergent in h.

(b) Let f ∈Mk(Γ(1)). Show that the function f(τ)Ek,s(τ)Im(τ)k is invariant under
the (weight 0) action of Γ(1).
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