MAMA/136, NST3AS/136, MAAS/136

MAT3 MATHEMATICAL TRIPOS Part III

Thursday, 1 June, 2023 9:00 am to 12:00 pm

PAPER 136

LOCAL FIELDS

Before you begin please read these instructions carefully

Candidates have THREE HOURS to complete the written examination.

Attempt no more than **FOUR** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

SPECIAL REQUIREMENTS None

Cover sheet Treasury tag Script paper Rough paper

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF CAMBRIDGE

1 (a) Let K be a non-archimedean local field and L/K a Galois extension. Define the Weil group W(L/K) and describe its topology. Give an example of an L and an open subgroup $U \subset W(L/K)$ which is not open as a subgroup of Gal(L/K).

(b) State the main theorem of local class field theory (local Artin reciprocity), and state the Existence Theorem. Show that for L/K a finite abelian extension, we have $[N_{L/K}(\mathcal{O}_L^{\times}):\mathcal{O}_K^{\times}] = e_{L/K}$, where $e_{L/K}$ is the ramification index of L/K.

(c) Let p be an odd prime and set $L_1 = \mathbb{Q}_p(\zeta_p)$ and $L_2 = \mathbb{Q}_p(\sqrt[p-1]{-p})$ where ζ_p is a primitive p^{th} -root of unity. Show that L_1/\mathbb{Q}_p and L_2/\mathbb{Q}_p are totally ramified Galois extensions and compute $N_{L_1/\mathbb{Q}_p}(L_1^{\times})$ and $N_{L_2/\mathbb{Q}_p}(L_2^{\times})$. Deduce that $L_1 = L_2$. [Results about the structure of \mathbb{Q}_p^{\times} may be used without proof as long as they are stated clearly.]

 $\mathbf{2}$

(a) State and prove a version of Hensel's Lemma.

(b) Show that $\mathbb{Q}_2^{\times}/(\mathbb{Q}_2^{\times})^2 \cong (\mathbb{Z}/2\mathbb{Z})^3$.

(c) Let p be an odd prime number. Determine the smallest integer $k \ge 1$ such that for $\alpha \in \mathbb{Z}_p^{\times}$, we have $\alpha \in (\mathbb{Z}_p^{\times})^p$ if and only if $\alpha \mod p^k \in ((\mathbb{Z}/p^k\mathbb{Z})^{\times})^p$.

3 (a) Let L/K be a finite Galois extension of non-archimedean local fields. Define the higher ramification groups $G_i(L/K)$ for $i \in \mathbb{Z}_{\geq -1}$. Show that if L/K is a totally ramified extension and $\pi_L \in L$ is a uniformizer, then we have

$$G_i(L/K) = \{ \sigma \in \operatorname{Gal}(L/K) | v_L(\sigma(\pi_L) - \pi_L) \ge i + 1 \},\$$

where v_L is the normalized valuation on L. Deduce (still assuming L/K totally ramified) that there is an injective group homomorphism $G_0(L/K)/G_1(L/K) \hookrightarrow k_L^{\times}$, where k_L is the residue field of L.

(b) Let L be the splitting field of the polynomial $f(X) = X^3 + 3X + 3$ over \mathbb{Q}_3 . Compute the higher ramification groups $G_i(L/\mathbb{Q}_3)$ for $i \ge -1$. [The discriminant of $X^3 + pX + q$ is $-4p^3 - 27q^2$.]

4 (a) State and prove Krasner's Lemma, and use it to show that every finite extension of \mathbb{Q}_p arises as the completion of a number field.

(b) Let L/K be a Galois extension of number fields and \mathfrak{p} a non-zero prime ideal of \mathcal{O}_K . Show that $\operatorname{Gal}(L/K)$ acts transitively on the set of prime ideals \mathcal{P} of \mathcal{O}_L with $\mathcal{P} \cap \mathcal{O}_K = \mathfrak{p}$. For $\mathcal{P} \subset \mathcal{O}_L$ such a prime ideal, define the decomposition group $G_{\mathcal{P}/\mathfrak{p}}$, and describe its relation with the Galois group $\operatorname{Gal}(L_{\mathcal{P}}/K_{\mathfrak{p}})$ of the completions.

Let L/\mathbb{Q} denote the splitting field of the polynomial $X^3 - 7$. Describe the decomposition groups for all primes of \mathcal{O}_L lying above p = 7.

5 Let $(K, |\cdot|)$ be a discretely valued field.

(a) Define the valuation ring \mathcal{O}_K and show that it is an integral domain with a unique maximal ideal \mathfrak{m} . Show that every ideal in \mathcal{O}_K is principal.

(b) Let L/K be a finite Galois extension and let $|\cdot|_L$ be an absolute value on L extending $|\cdot|$.

- (i) Show that if K is complete, then $|\cdot|_L$ is the unique absolute value on L extending $|\cdot|$, and deduce that $|\sigma(x)|_L = |x|_L$, for all $x \in L$ and $\sigma \in \text{Gal}(L/K)$.
- (ii) Show that if K is complete, then \mathcal{O}_L is the integral closure of \mathcal{O}_K in L. Give an example to show that this need not hold when K is not complete.

END OF PAPER