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1 (a) Let K be a non-archimedean local field and L/K a Galois extension. Define
the Weil group W (L/K) and describe its topology. Give an example of an L and an open
subgroup U ⊂W (L/K) which is not open as a subgroup of Gal(L/K).

(b) State the main theorem of local class field theory (local Artin reciprocity), and
state the Existence Theorem. Show that for L/K a finite abelian extension, we have
[NL/K(O×

L ) : O×
K ] = eL/K , where eL/K is the ramification index of L/K.

(c) Let p be an odd prime and set L1 = Qp(ζp) and L2 = Qp( p−1
√−p) where ζp

is a primitive pth-root of unity. Show that L1/Qp and L2/Qp are totally ramified Galois
extensions and compute NL1/Qp

(L×
1 ) and NL2/Qp

(L×
2 ). Deduce that L1 = L2. [Results

about the structure of Q×
p may be used without proof as long as they are stated clearly.]
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(a) State and prove a version of Hensel’s Lemma.

(b) Show that Q×
2 /(Q

×
2 )

2 ∼= (Z/2Z)3.

(c) Let p be an odd prime number. Determine the smallest integer k > 1 such that
for α ∈ Z×

p , we have α ∈ (Z×
p )

p if and only if α mod pk ∈ ((Z/pkZ)×)p.

3 (a) Let L/K be a finite Galois extension of non-archimedean local fields. Define the
higher ramification groups Gi(L/K) for i ∈ Z>−1. Show that if L/K is a totally ramified
extension and πL ∈ L is a uniformizer, then we have

Gi(L/K) = {σ ∈ Gal(L/K)|vL(σ(πL)− πL) > i+ 1},

where vL is the normalized valuation on L. Deduce (still assuming L/K totally ramified)
that there is an injective group homomorphism G0(L/K)/G1(L/K) ↪→ k×L , where kL is
the residue field of L.

(b) Let L be the splitting field of the polynomial f(X) = X3 + 3X + 3 over Q3.
Compute the higher ramification groups Gi(L/Q3) for i > −1. [The discriminant of
X3 + pX + q is −4p3 − 27q2.]

4 (a) State and prove Krasner’s Lemma, and use it to show that every finite extension
of Qp arises as the completion of a number field.

(b) Let L/K be a Galois extension of number fields and p a non-zero prime ideal
of OK . Show that Gal(L/K) acts transitively on the set of prime ideals P of OL with
P ∩ OK = p. For P ⊂ OL such a prime ideal, define the decomposition group GP/p, and
describe its relation with the Galois group Gal(LP/Kp) of the completions.

Let L/Q denote the splitting field of the polynomial X3 − 7. Describe the
decomposition groups for all primes of OL lying above p = 7.
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5 Let (K, | · |) be a discretely valued field.

(a) Define the valuation ring OK and show that it is an integral domain with a
unique maximal ideal m. Show that every ideal in OK is principal.

(b) Let L/K be a finite Galois extension and let | · |L be an absolute value on L
extending | · |.

(i) Show that if K is complete, then | · |L is the unique absolute value on L extending
| · |, and deduce that |σ(x)|L = |x|L, for all x ∈ L and σ ∈ Gal(L/K).

(ii) Show that if K is complete, then OL is the integral closure of OK in L. Give an
example to show that this need not hold when K is not complete.
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