MAMA/133, NST3AS/133, MAAS/133

MAT3 MATHEMATICAL TRIPOS Part III

Tuesday, 13 June, 2023 $\,$ 9:00 am to 11:00 am $\,$

PAPER 133

GEOMETRIC GROUP THEORY

Before you begin please read these instructions carefully

Candidates have TWO HOURS to complete the written examination.

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

SPECIAL REQUIREMENTS None

Cover sheet Treasury tag Script paper Rough paper

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 (a) Prove that the subgroup

$$\left\langle \left(\begin{array}{rrr} 1 & 2 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rrr} 1 & 0 \\ 2 & 1 \end{array}\right) \right\rangle$$

of $SL_2(\mathbb{Z})$ is free of rank 2. [*Hint: Consider the sets* $A = \{(x, y) \in \mathbb{R}^2 \mid |x| > |y|\}$ and $B = \{(x, y) \in \mathbb{R}^2 \mid |x| < |y|\}$.]

(b) Recall that a group G is *residually finite* if, for every non-trivial element g of G, there is a homomorphism f to a finite group such that $f(g) \neq 1$. Prove that the free group of rank 2 is residually finite.

2 (a) Prove that the Heisenberg group

$$H = \left\{ \left(\begin{array}{rrr} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{array} \right) \middle| x, y, z \in \mathbb{Z} \right\}$$

can be written as a semi-direct product $\mathbb{Z}^2 \rtimes_A \mathbb{Z}$ for a certain matrix A, which you should state explicitly. Compute the abelianisation of H.

(b) Let $\Gamma_B = \mathbb{Z}^2 \rtimes_B \mathbb{Z}$, where $B \in GL_2(\mathbb{Z})$. Prove that, if 1 is not an eigenvalue of B, then the image of the \mathbb{Z}^2 factor in the abelianisation of Γ_B is finite. [*Hint: Consider a commutator* $tnt^{-1}n^{-1}$, where t generates the \mathbb{Z} factor and n is contained in the \mathbb{Z}^2 factor.]

(c) Exhibit a matrix $C \in GL_2(\mathbb{Z})$ such that the abelianisation of any finite-index subgroup of Γ_C is virtually cyclic. Justify your answer.

3 Throughout this question, H is a subgroup of G.

(a) Consider finite generating sets S for G and T for H, and let d_S and d_T be the corresponding word metrics. Prove that

$$d_S(h_1, h_2) \leqslant C \, d_T(h_1, h_2)$$

for some constant C and all elements $h_1, h_2 \in H$.

(b) The subgroup H is said to be a *retract* if there is a homomorphism $r: G \to H$ such that r(h) = h for all $h \in H$. Prove that retracts are quasi-isometrically embedded.

(c) Let

$$G = \langle a, b \mid bab^{-1} = a^2 \rangle$$

and let $H = \langle a \rangle$. Prove that H is not quasi-isometrically embedded in G.

UNIVERSITY OF

4 (a) Let X be a δ -hyperbolic metric space and let $\gamma : \mathbb{R} \to X$ be an isometric embedding. For any $x \in X$, prove that there is $t \in \mathbb{R}$ that minimises $d(x, \gamma(t))$.

Now suppose that $t_1, t_2 \in \mathbb{R}$ both minimise $d(x, \gamma(t))$. Prove that $|t_1 - t_2| \leq 6\delta$.

(b) Consider a geodesic triangle in X with vertices x, y and z. Let p be the point on the side zx with

$$d(z,p) = \frac{d(x,z) + d(y,z) - d(x,y)}{2}.$$

Similarly, let q be the point on xy with

$$d(x,q) = \frac{d(y,x) + d(z,x) - d(y,z)}{2},$$

and let r be the point on yz with

$$d(y,r) = \frac{d(z,y) + d(x,y) - d(z,x)}{2} \,.$$

Prove that p, q and r are all at distance at most 4δ from each other.

END OF PAPER