PAPER 133

GEOMETRIC GROUP THEORY

Before you begin please read these instructions carefully

Candidates have TWO HOURS to complete the written examination.

Attempt no more than THREE questions.
There are FOUR questions in total.
The questions carry equal weight.

STATIONERY REQUIREMENTS
Cover sheet
Treasury tag
Script paper
Rough paper

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 (a) Prove that the subgroup

$$
\left\langle\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right)\right\rangle
$$

of $S L_{2}(\mathbb{Z})$ is free of rank 2. [Hint: Consider the sets $A=\left\{(x, y) \in \mathbb{R}^{2}| | x|>|y|\}\right.$ and $B=\left\{(x, y) \in \mathbb{R}^{2}| | x|<|y|\}.\right]$
(b) Recall that a group G is residually finite if, for every non-trivial element g of G, there is a homomorphism f to a finite group such that $f(g) \neq 1$. Prove that the free group of rank 2 is residually finite.

2
(a) Prove that the Heisenberg group

$$
H=\left\{\left.\left(\begin{array}{ccc}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right) \right\rvert\, x, y, z \in \mathbb{Z}\right\}
$$

can be written as a semi-direct product $\mathbb{Z}^{2} \rtimes_{A} \mathbb{Z}$ for a certain matrix A, which you should state explicitly. Compute the abelianisation of H.
(b) Let $\Gamma_{B}=\mathbb{Z}^{2} \rtimes_{B} \mathbb{Z}$, where $B \in G L_{2}(\mathbb{Z})$. Prove that, if 1 is not an eigenvalue of B, then the image of the \mathbb{Z}^{2} factor in the abelianisation of Γ_{B} is finite. [Hint: Consider a commutator tnt ${ }^{-1} n^{-1}$, where t generates the \mathbb{Z} factor and n is contained in the \mathbb{Z}^{2} factor.]
(c) Exhibit a matrix $C \in G L_{2}(\mathbb{Z})$ such that the abelianisation of any finite-index subgroup of Γ_{C} is virtually cyclic. Justify your answer.

3 Throughout this question, H is a subgroup of G.
(a) Consider finite generating sets S for G and T for H, and let d_{S} and d_{T} be the corresponding word metrics. Prove that

$$
d_{S}\left(h_{1}, h_{2}\right) \leqslant C d_{T}\left(h_{1}, h_{2}\right)
$$

for some constant C and all elements $h_{1}, h_{2} \in H$.
(b) The subgroup H is said to be a retract if there is a homomorphism $r: G \rightarrow H$ such that $r(h)=h$ for all $h \in H$. Prove that retracts are quasi-isometrically embedded.
(c) Let

$$
G=\left\langle a, b \mid b a b^{-1}=a^{2}\right\rangle
$$

and let $H=\langle a\rangle$. Prove that H is not quasi-isometrically embedded in G.
$4 \quad$ (a) Let X be a δ-hyperbolic metric space and let $\gamma: \mathbb{R} \rightarrow X$ be an isometric embedding. For any $x \in X$, prove that there is $t \in \mathbb{R}$ that minimises $d(x, \gamma(t))$.

Now suppose that $t_{1}, t_{2} \in \mathbb{R}$ both minimise $d(x, \gamma(t))$. Prove that $\left|t_{1}-t_{2}\right| \leqslant 6 \delta$.
(b) Consider a geodesic triangle in X with vertices x, y and z. Let p be the point on the side $z x$ with

$$
d(z, p)=\frac{d(x, z)+d(y, z)-d(x, y)}{2}
$$

Similarly, let q be the point on $x y$ with

$$
d(x, q)=\frac{d(y, x)+d(z, x)-d(y, z)}{2}
$$

and let r be the point on $y z$ with

$$
d(y, r)=\frac{d(z, y)+d(x, y)-d(z, x)}{2}
$$

Prove that p, q and r are all at distance at most 4δ from each other.

END OF PAPER

