MAMA/130, NST3AS/130, MAAS/130

MAT3 MATHEMATICAL TRIPOS Part III

Thursday, 8 June, 2023 1:30pm to 3:30pm

PAPER 130

RAMSEY THEORY

Before you begin please read these instructions carefully

Candidates have TWO HOURS to complete the written examination.

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

SPECIAL REQUIREMENTS None

Cover sheet Treasury tag Script paper Rough paper

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1

(i) State and prove the Hales-Jewett theorem. Deduce the extended Hales-Jewett theorem.

(ii) A subset of \mathbb{N} of the form $\{a + \sum_{i \in I} x_i : I \subset [n]\}$, where a and x_1, \ldots, x_n are fixed positive integers, is called a *Hilbert n-cube*. Use the extended Hales-Jewett theorem on alphabet $\{0, 1\}$ to show that, for any n, whenever \mathbb{N} is finitely coloured there is a monochromatic Hilbert *n*-cube.

[You may not assume the Finite Sums theorem or van der Waerden's theorem.]

(iii) Give a direct proof, using induction on n (but not using any theorems from the course), that whenever \mathbb{N} is finitely coloured there is a monochromatic Hilbert *n*-cube.

$\mathbf{2}$

State and prove Rado's theorem.

[You may assume that, for any m, p, c, whenever \mathbb{N} is finitely coloured there is a monochromatic (m, p, c)-set.]

What is the smallest prime p such that, in the 'last digit in base p' colouring of \mathbb{N} , there is no monochromatic solution to the equation 4x + 3y - 6z = 0? Justify your answer.

Find a 10-colouring on \mathbb{N} for which there is no monochromatic solution to the equation x + 2y - 7z = 0. By modifying your colouring, or otherwise, find a 5-colouring of \mathbb{N} with this property.

3

State and prove Hindman's theorem. [You may assume that the space $\beta \mathbb{N}$ is a compact Hausdorff space, and also simple facts about ultrafilters, their quantifiers, and the operation + on $\beta \mathbb{N}$.]

Let x_1, x_2, \ldots be a sequence of distinct elements of the unit interval [0, 1], and let \mathcal{U} be a fixed ultrafilter. Explain why the sets $\{x_n : n \in A\}$, for each $A \in \mathcal{U}$, have the finite intersection property. Deduce that, for some $x \in [0, 1]$, every neighbourhood of x meets every such set. Can there be two such points x? Justify your answer.

 $\mathbf{4}$

Prove that every regular *m*-gon is Ramsey. [If you use a result about *A*-invariant colourings of X^n then you must prove it.]

A finite subset X of \mathbb{R}^d , for some d, is called *approximately Ramsey* if for every k and every $\epsilon > 0$ there exists a finite set S in \mathbb{R}^n , for some n, such that whenever S is k-coloured there is a monochromatic set X' that is within ϵ of being a copy of X – meaning that there is a bijection $x \mapsto x'$ from X to X' such that for all $x, y \in X$ the distance from x' to y' is within ϵ of the distance from x to y. Explain why $\{0, 1, 2\}$ is approximately Ramsey. Is every finite subset X of \mathbb{R}^d (for every d) approximately Ramsey? Justify your answer. [You may assume that the product of two Ramsey sets is again Ramsey.]

END OF PAPER