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1

(i) State and prove the Hales-Jewett theorem. Deduce the extended Hales-Jewett
theorem.

(ii) A subset of N of the form {a +
∑

i∈I xi : I ⊂ [n]}, where a and x1, . . . , xn are
fixed positive integers, is called a Hilbert n-cube. Use the extended Hales-Jewett theorem
on alphabet {0, 1} to show that, for any n, whenever N is finitely coloured there is a
monochromatic Hilbert n-cube.

[You may not assume the Finite Sums theorem or van der Waerden’s theorem.]

(iii) Give a direct proof, using induction on n (but not using any theorems from the
course), that whenever N is finitely coloured there is a monochromatic Hilbert n-cube.

2

State and prove Rado’s theorem.

[You may assume that, for any m, p, c, whenever N is finitely coloured there is a
monochromatic (m, p, c)-set.]

What is the smallest prime p such that, in the ‘last digit in base p’ colouring of N,
there is no monochromatic solution to the equation 4x+3y−6z = 0? Justify your answer.

Find a 10-colouring on N for which there is no monochromatic solution to the
equation x + 2y − 7z = 0. By modifying your colouring, or otherwise, find a 5-colouring
of N with this property.

3

State and prove Hindman’s theorem. [You may assume that the space βN is a
compact Hausdorff space, and also simple facts about ultrafilters, their quantifiers, and
the operation + on βN.]

Let x1, x2, . . . be a sequence of distinct elements of the unit interval [0, 1], and let U
be a fixed ultrafilter. Explain why the sets {xn : n ∈ A}, for each A ∈ U , have the finite
intersection property. Deduce that, for some x ∈ [0, 1], every neighbourhood of x meets
every such set. Can there be two such points x? Justify your answer.
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Prove that every regular m-gon is Ramsey. [If you use a result about A-invariant
colourings of Xn then you must prove it.]

A finite subset X of Rd, for some d, is called approximately Ramsey if for every k
and every ε > 0 there exists a finite set S in Rn, for some n, such that whenever S is
k-coloured there is a monochromatic set X ′ that is within ε of being a copy of X – meaning
that there is a bijection x 7→ x′ from X to X ′ such that for all x, y ∈ X the distance from
x′ to y′ is within ε of the distance from x to y. Explain why {0, 1, 2} is approximately
Ramsey. Is every finite subset X of Rd (for every d) approximately Ramsey? Justify your
answer. [You may assume that the product of two Ramsey sets is again Ramsey.]
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