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1 Let X = V/Γ be a complex torus.

(i) What is a Riemann form on X? What is a polarisation on X?

(ii) Let V ′ ⊂ V be a complex subspace such that Γ′ = Γ ∩ V ′ has rank equal to
2 dimC V ′. Show that X ′ = V ′/Γ′ is a complex subtorus of X, and that every subtorus is
of this form.

Let H be a polarisation on X. Show that it induces a polarisation on X ′, and that
there exists a subtorus X ′′ ⊂ X such that X = X ′ + X ′′ and X ′ ∩X ′′ is finite.

(iii) Let X = C2/Γ be the complex torus for which Γ is the lattice generated by the
columns of the matrix (

1 0 i
√

2

0 1 0 i
√

3

)

Show that X contains a unique subtorus of dimension 1. Hence or otherwise show that
there does not exist any polarisation on X.

2 In this question, all varieties are over a fixed algebraically closed field k.

(i) Give a definition of a group scheme over k. Show that every group scheme over
k is separated. Give an example of a group scheme over a field which is not reduced.

(ii) State Mumford’s Rigidity Lemma. Use it to show that if X is an abelian
variety and G is any group variety, then for every morphism f : X → G, there exists a
homomorphism of group varieties g : X → G and y ∈ G(k) such that f = Ty ◦ g.

(iii) Show that (ii) can fail if X is merely required to be a group variety.

(iv) Show that the group law on an abelian variety is commutative.

(v) Let X be an abelian variety, and X1, X2 ⊂ X closed subvarieties, both containing
the identity e ∈ X(k), such that the product map p : X1 ×X2 → X, p(x, y) = x+ y, is an
isomorphism. Show that Xi are abelian varieties and that p is an isomorphism of group
schemes.
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3 In this question, all varieties are over a fixed algebraically closed field k.

(i) State the Theorem of the Cube. Deduce that if X is an abelian variety, L
is an invertible OX -module, and Y is any variety, then for any triple of morphisms
f, g, h : Y → X, the invertible OY -module

Mf,g,h = (f + g + h)∗L ⊗ (f + g)∗L∨ ⊗ (f + h)∗L∨ ⊗ (g + h)∗L∨ ⊗ f∗L ⊗ g∗L ⊗ h∗L

is trivial. Deduce that for every x, y ∈ X(k), T ∗x+yL ' T ∗xL ⊗ T ∗yL ⊗ L∨.

(ii) Define the map φL : X(k)→ PicX attached to an invertible OX -module on the
abelian variety X, and show that it is a homomorphism. Show also that if M ∈ PicX is
in the image of φL for some L, then φM = 0.

(iii) Let L, L′ be invertible OX -modules, x ∈ X(k). Show that

φL⊗L′ = φLφL′ , φL∨ = φ−1L , φT ∗xL = φL

and that for every n ∈ Z, φ[n]∗L(x) = φL(nx)n.

[You may use the formula for [n]∗L without proof.]
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