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1 (a) State the Riemann-Roch theorem for a smooth projective curve of genus 1. For
E an elliptic curve, define the group Pic0(E) and prove that the map E → Pic0(E) given
by P 7→ [(P )− (OE)] is a bijection.

(b) Define the group law on an elliptic curve in terms of the chord and tangent
process, and prove that it defines an abelian group.

(c) Let φ : E1 → E2 be a separable isogeny of degree d with #(E1[φ] ∩ E1[2]) =
1 or 4. Show that there is a rational function g on E1 satisfying

div(g) = φ∗(OE2)− d (OE1) and [−1]∗g = ±g.

Show that both signs ± can occur by computing explicit formulae for g in the cases where
φ is multiplication by 2 or 3 on an elliptic curve in shorter Weierstrass form.

2 State and prove Hasse’s theorem for elliptic curves over finite fields, clearly stating
any general facts about isogenies or differentials that you use.

Give an example of a pair of elliptic curves over Fp that are isogenous over Fp but
for which E1(Fp) 6∼= E2(Fp). Prove that there are no such examples if p < 43 and the
isogeny has degree 7. [Properties of the Weil pairing may be quoted without proof.]

3 Let K be a finite extension of Qp with valuation ring OK , uniformiser π, and residue
field k. Let E/K be an elliptic curve with good reduction.

(a) Explain what is meant by saying E/K has good reduction. Define the reduction
map E(K)→ Ẽ(k) and prove that it is a group homomorphism.

(b) State a version of Hensel’s lemma for polynomials in OK [X]. Use it to show
that the reduction map is surjective, and that for each 0 6= t ∈ πOK there is a unique
point θ(t) = (x, y) in the kernel of reduction with t = −x/y. We set θ(0) = OE .

For the final part of this question you may assume that there is a formal group
F ∈ OK [[X,Y ]] with θ(F (t1, t2)) = θ(t1) + θ(t2) for all t1, t2 ∈ πOK . Any other results
you need about formal groups should be carefully stated.

(c) Show that if P ∈ E(K) and p - n then K([n]−1P )/K is unramified. Deduce that
for some finite unramified extension L/K the natural map E(K)/nE(K)→ E(L)/nE(L)
is the zero map.
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4 Let E/Q be an elliptic curve with equation y2 = x3 + ax+ b where a, b ∈ Z.

(a) Define the height H(x) of a rational number x. Show that if ξ(X) = r(X)/s(X)
with r, s ∈ Q[X] coprime and max(deg(r),deg(s)) = d then there exist constants c1, c2 > 0
such that

c1H(x)d 6 H(ξ(x)) 6 c2H(x)d

for all x ∈ Q with s(x) 6= 0. Following this proof, or otherwise, show that for (x, y) ∈ E(Q)
we have

γ−2H(x)3 6 H(y)2 6 γH(x)3

where γ = 1 + |a|+ |b|.
(b) Define the logarithmic height h : E(Q) → R and the canonical height

ĥ : E(Q) → R. Show that the latter is well defined and satisfies ĥ(nP ) = n2ĥ(P ) for
all n ∈ Z and P ∈ E(Q).

(c) Explain, with brief justification, how the canonical height ĥ would change if

(i) we changed to a different Weierstrass equation for E,

(ii) we changed the definition of ĥ replacing the constants 2 and 4 by 3 and 9.

(iii) we changed the definition of h replacing the x-coordinate by the y-coordinate.

[You may wish to use the identity (X2 − a)(X3 + aX + b)− (bX2 − a2X − ab) = X5.]

5 (a) Let E/Q be an elliptic curve with equation y2 = x3 + ax2 + bx + c where
a, b, c ∈ Z. Quoting suitable results from the theory of formal groups show that if
0E 6= T = (x, y) ∈ E(Q) is a point of finite order then x, y ∈ Z.

(b) Let E/Q be the elliptic curve y2 = x3 − x2 + 25x. Let T = (0, 0), P = (1, 5)
and Q = (5, 15). Compute P + T , Q + T and P + Q. Describe the method of descent by
2-isogeny. Use this and your previous calculations to compute integers d1|d2| · · · |dt and r
such that E(Q) ∼= Z/d1Z× · · · × Z/dtZ× Zr.
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