MAMA/125, NST3AS/125, MAAS/125

MAT3 MATHEMATICAL TRIPOS Part III

Friday, 9 June, 2023 $1:\!30\mathrm{pm}$ to $4:\!30\mathrm{pm}$

PAPER 125

ELLIPTIC CURVES

Before you begin please read these instructions carefully

Candidates have THREE HOURS to complete the written examination.

Attempt no more than **FOUR** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

SPECIAL REQUIREMENTS None

Cover sheet Treasury tag Script paper Rough paper

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 (a) State the Riemann-Roch theorem for a smooth projective curve of genus 1. For E an elliptic curve, define the group $\operatorname{Pic}^{0}(E)$ and prove that the map $E \to \operatorname{Pic}^{0}(E)$ given by $P \mapsto [(P) - (O_E)]$ is a bijection.

(b) Define the group law on an elliptic curve in terms of the chord and tangent process, and prove that it defines an abelian group.

(c) Let $\phi : E_1 \to E_2$ be a separable isogeny of degree d with $\#(E_1[\phi] \cap E_1[2]) = 1$ or 4. Show that there is a rational function g on E_1 satisfying

$$\operatorname{div}(g) = \phi^*(O_{E_2}) - d(O_{E_1})$$
 and $[-1]^*g = \pm g$.

Show that both signs \pm can occur by computing explicit formulae for g in the cases where ϕ is multiplication by 2 or 3 on an elliptic curve in shorter Weierstrass form.

2 State and prove Hasse's theorem for elliptic curves over finite fields, clearly stating any general facts about isogenies or differentials that you use.

Give an example of a pair of elliptic curves over \mathbb{F}_p that are isogenous over \mathbb{F}_p but for which $E_1(\mathbb{F}_p) \not\cong E_2(\mathbb{F}_p)$. Prove that there are no such examples if p < 43 and the isogeny has degree 7. [Properties of the Weil pairing may be quoted without proof.]

3 Let K be a finite extension of \mathbb{Q}_p with valuation ring \mathcal{O}_K , uniformiser π , and residue field k. Let E/K be an elliptic curve with good reduction.

(a) Explain what is meant by saying E/K has good reduction. Define the reduction map $E(K) \to \widetilde{E}(k)$ and prove that it is a group homomorphism.

(b) State a version of Hensel's lemma for polynomials in $\mathcal{O}_K[X]$. Use it to show that the reduction map is surjective, and that for each $0 \neq t \in \pi \mathcal{O}_K$ there is a unique point $\theta(t) = (x, y)$ in the kernel of reduction with t = -x/y. We set $\theta(0) = O_E$.

For the final part of this question you may assume that there is a formal group $F \in \mathcal{O}_K[[X,Y]]$ with $\theta(F(t_1,t_2)) = \theta(t_1) + \theta(t_2)$ for all $t_1, t_2 \in \pi \mathcal{O}_K$. Any other results you need about formal groups should be carefully stated.

(c) Show that if $P \in E(K)$ and $p \nmid n$ then $K([n]^{-1}P)/K$ is unramified. Deduce that for some finite unramified extension L/K the natural map $E(K)/nE(K) \to E(L)/nE(L)$ is the zero map.

UNIVERSITY OF CAMBRIDGE

4 Let E/\mathbb{Q} be an elliptic curve with equation $y^2 = x^3 + ax + b$ where $a, b \in \mathbb{Z}$.

(a) Define the height H(x) of a rational number x. Show that if $\xi(X) = r(X)/s(X)$ with $r, s \in \mathbb{Q}[X]$ coprime and $\max(\deg(r), \deg(s)) = d$ then there exist constants $c_1, c_2 > 0$ such that

$$c_1 H(x)^d \leq H(\xi(x)) \leq c_2 H(x)^d$$

for all $x \in \mathbb{Q}$ with $s(x) \neq 0$. Following this proof, or otherwise, show that for $(x, y) \in E(\mathbb{Q})$ we have

$$\gamma^{-2}H(x)^3 \leqslant H(y)^2 \leqslant \gamma H(x)^3$$

where $\gamma = 1 + |a| + |b|$.

(b) Define the logarithmic height $h : E(\mathbb{Q}) \to \mathbb{R}$ and the canonical height $\hat{h} : E(\mathbb{Q}) \to \mathbb{R}$. Show that the latter is well defined and satisfies $\hat{h}(nP) = n^2 \hat{h}(P)$ for all $n \in \mathbb{Z}$ and $P \in E(\mathbb{Q})$.

(c) Explain, with brief justification, how the canonical height \hat{h} would change if

- (i) we changed to a different Weierstrass equation for E,
- (ii) we changed the definition of \hat{h} replacing the constants 2 and 4 by 3 and 9.
- (iii) we changed the definition of h replacing the x-coordinate by the y-coordinate.

[You may wish to use the identity $(X^2 - a)(X^3 + aX + b) - (bX^2 - a^2X - ab) = X^5$.]

5 (a) Let E/\mathbb{Q} be an elliptic curve with equation $y^2 = x^3 + ax^2 + bx + c$ where $a, b, c \in \mathbb{Z}$. Quoting suitable results from the theory of formal groups show that if $0_E \neq T = (x, y) \in E(\mathbb{Q})$ is a point of finite order then $x, y \in \mathbb{Z}$.

(b) Let E/\mathbb{Q} be the elliptic curve $y^2 = x^3 - x^2 + 25x$. Let T = (0,0), P = (1,5)and Q = (5,15). Compute P + T, Q + T and P + Q. Describe the method of descent by 2-isogeny. Use this and your previous calculations to compute integers $d_1|d_2|\cdots|d_t$ and rsuch that $E(\mathbb{Q}) \cong \mathbb{Z}/d_1\mathbb{Z} \times \cdots \times \mathbb{Z}/d_t\mathbb{Z} \times \mathbb{Z}^r$.

END OF PAPER