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1 (i) The majority function fyp, :{0,1}" — {0,1} takes the value 1 if and only if at
least r of its inputs take the value 1. Prove that if 0 < r < n, then the decision-tree depth
of fnr is n.

(ii) State the switching lemma.

(iii) Let n be even. Prove that a layered circuit of depth d (with alternations of
AND and OR gates) that computes the majority function f, /o must have size at least
exp(en!/?=1) for an absolute constant ¢ > 0. [You may assume the switching lemma, and
also the Chernoff estimate P[X < (1 — 6)u] < e 9°#/2, where X is a sum of independent
random variables taking values in [0,1] and 4 = EX. Any other lemmas you might need
should be proved.|

2 Let £ be the lattice of subsets of {0,1}" of the form [A], where A is an r-closed
subset of [n](S). Throughout this question, assume that 2(r — 1)m < n and 12 < m.

(i) Define the operations M and U that make £ into a lattice, and state a lemma
concerning the difference between a set A computed by a monotone circuit of size at most
M and the set A € £ computed in the corresponding way using the operations M and L
in the place of N and U.

(ii) Prove that if A is r-closed, then either [A] is the set of all graphs or it contains
at most half the cliques of size m.

(iii) Prove that if A and B are closed sets, then 6n([A], [B]) contains at most
4.2_1/2(") cliques of size m.
m

(iv) Prove that if A and B are closed sets, then 0,([A], [B]) contains a proportion
of at most n!2™" of the complete (m — 1)-partite graphs.

(v) Explain very briefly why these facts show that the monotone complexity of the
clique function is exponentially large in a power of the number of inputs.

(vi) Let g, be the function defined on graphs G by setting ¢,,(G) to equal 1 if and
only if G does not contain an independent set of size m. Deduce that (for suitable m that
depends on the number of vertices) the monotone complexity of g, is also exponentially
large.
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3 (i) Let a,b,c and d be four indeterminate variables. Show that there are three
polynomials of the form L(a,b,c,d)M(a,b,c,d), where L and M are linear in a,b, ¢, d (in
other words, three rank-1 quadratic forms), such that the three polynomials ac, bd, and
ad + be all belong to their linear span.

(ii) Let f(k) be the smallest number of times two digits need to be multiplied
together when one is computing a product of two numbers with 2% digits each. Use the
answer to part (i) to show that f(k+ 1) < 3f(k). Deduce that there is an algorithm for
computing the product of two n-digit numbers that requires O(n®) multiplications, where
a = log3/log2 (beating long multiplication, which needs more like n? multiplications).
[You may choose whether to consider numbers represented in base 10 or in base 2.]

(ili)) A Horn clause is a disjunction of literals, at most one of which is positive.
(Examples of Horn clauses are xV—-yV—z, mxV-y, and x.) Show that there is a polynomial-
time algorithm for determining whether a CNF formula in which all the clauses are Horn
clauses is satisfiable. [Hint: show first that if all clauses contain at least two literals, then
the formula is satisfiable.]

4 (i) Give a high-level account of how to prove that #3SATP¥ (counting solutions
to instances of 3SAT with the same number of occurrences of x; and —z; for each i) can
be polynomially reduced to computing the permanent of a matrix that takes values in
{=1,0,1}. [You should describe the gadgets used and explain how they do what they
do, but do not need to give all the details of the arguments. In particular, if a fact can
be proved by a routine case analysis, you can simply state the conclusion. You may also
assume definitions and basic facts associated with cycle covers.]

(ii) Let M be an n x n matrix, each of whose entries is an integer between 0 and
2™ — 1. Give a method that constructs in polynomial time a 0l-matrix N with the same
permanent. [Hint: for each edge weight in the corresponding directed graph, consider its
binary expansion. ]

5 (i) State and prove the theorem of Razborov and Rudich concerning the natural-
proofs barrier to obtaining lower bounds for circuit complexity.

(ii) A formal complexity measure on the set of functions f : {0,1}" — {0,1} is a
function p with the following properties.

1. If f(x) = z; for every x, or f(x) =1 — x; for every x, then u(f) = 1.
2. For every f,g, u(f A g) < p(f) + p(g)-

3. For every f,g, u(fVg) < p(f) + u(g).

Prove that if 4 is a formal complexity measure, then u(f) is a lower bound for the size of
the smallest formula that computes f.

END OF PAPER
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