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1 This question concerns the ideal theoretic version of global class field theory. Let
K be a number field.

1. Give the definition of a modulus of K.

2. State and prove the ideal theoretic version of the decomposition law.

3. Define the Hilbert class field of K and describe the Galois group of the Hilbert class
field over K.

4. Let F be the Hilbert class field of K, and let p be a prime ideal of K, unramified
in F . Use the decomposition theorem to prove that p splits completely in F if and
only if p is a principal ideal.

5. Let K = Q(
√
−6). Find the Hilbert class field of K. You may use without proof

that hK = 2.

2 Let K be a number field.

1. Give the definition of the Dedekind zeta function and write down its Euler product.

2. State the analytic class number formula.

3. Give the definition of a Dirichlet character and its Dirichlet L-series.

4. Let K be a quadratic number field with discriminant dK . Show that ζK(s) can be
written as a product of Dirichlet L-series.

5. Next let dK < 0 with dK 6= −3,−4. Deduce the quadratic class number formula for
the imaginary quadratic field K using the identity:

|L(χ, 1)| = π

|2− χ(2)|√m
∣∣∣

∑

a∈(Z/mZ)×
a<m/2

χ(a)
∣∣∣ if χ(−1) = −1.

where χ is a Dirichlet character mod m.

6. Compute the class number of Q(
√
−11).
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3 Let K be a number field. Let L/K be a finite Galois extension, and write SL/K for
the prime ideals of K that split completely in L.

1. Give the definition of Dirichlet density.

2. State the Chebotarev density theorem.

3. If L/K is abelian, and if m is a modulus divisible by the conductor of L/K, prove
that the Artin map is surjective.

4. Compute the Dirichlet density of SL/K .

5. Compute the density of principal prime ideals of K.

4 Let K be a number field and let L/K be a finite extension.

1. (a) Give the definition of an adele of K and show the set of adeles forms the ring
of adeles AK (with appropriate operations).

(b) Give the definition of the group of ideles IK .

(c) Let ϕ : A×
K → AK × AK be the embedding defined by α 7→ (α, α−1).

Show the restricted product topology on IK equals the subspace topology
on ϕ(A×

K) ⊂ AK × AK .

2. (a) Show that we have an injective homomorphism K× ↪→ IK , and show that K×

is a discrete subgroup of IK .

(b) Show that we have an injective homomorphism iL/K : IK ↪→ IL.

(c) Show that the norm NL/K of a principal idele is principal.

(d) Prove that the norm group NL/KCL of a Galois extension L/K is the norm
group of an abelian extension of K.

END OF PAPER
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