MAMA/122, NST3AS/122, MAAS/122

MAT3 MATHEMATICAL TRIPOS Part III

Thursday, 1 June, 2023 9:00 am to 11:00 am

PAPER 122

EXTREMAL AND PROBABILISTIC COMBINATORICS

Before you begin please read these instructions carefully

Candidates have TWO HOURS to complete the written examination.

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

SPECIAL REQUIREMENTS None

Cover sheet Treasury tag Script paper Rough paper

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1

(a) State Harris's inequality, or the FKG inequality, making sure to define the relevant notions. State and prove Janson's inequalities.

(b) Let $G \sim G(n, p)$. Show that

$$\mathbb{P}(G \not\supseteq K_3) = \begin{cases} e^{-\Theta(p^3 n^3)} & \text{if } 0$$

(c) Show there exists a C > 0 for which the following holds. If $p = Cn^{-3/4}$ and $G \sim G(n,p)$, then G contains at least n/10 vertex disjoint copies of C_4 , with high probability.

$\mathbf{2}$

(a) For $s, k \ge 1$ and a graph G, define what it means for $R \subseteq V(G)$ to be (s, k)-rich. Now let G be a graph with |G| = n and e(G) = m. Let $r, s, k, t \ge 1$ be such that

$$\frac{(2m)^t}{n^{2t-1}} - \binom{n}{s} \left(\frac{k}{n}\right)^t \ge r.$$

Show that there exists a (s, k)-rich set $R \subseteq V(G)$, with $|R| \ge r$.

(b) Let H be a bipartite graph with bipartition $A \cup B$ where every vertex $x \in B$ has $\deg(x) \leq s$. Let G be a graph for which there exists exists a (s, |H|)-rich set $R \subseteq V(G)$ with $|R| \geq |A|$. Show that $G \supseteq H$.

(c) Let H be a graph. The Ramsey number r(H) is the smallest n for which every 2colouring of the edges of K_n contains a monochromatic copy of H. In other words, r(H)is the minimum n so that every partition $E(K_n) = G_1 \cup G_2$, has the property that either $G_1 \supset H$ or $G_2 \supset H$.

We define Q_d to be the hypercube graph in dimension d. Here $V(Q_d) = \{0,1\}^d$ and two vertices $x, y \in \{0,1\}^d$ are adjacent when x, y differ in exactly one coordinate. Show that

$$r(Q_d) \leqslant 2^{4d}.$$

3

(a) State Markov's inequality and state Chebychev's inequality.

Now show that if $p \gg n^{-1}$ and $G \sim G(n, p)$ then

 $\lim_{n \to \infty} \mathbb{P}(G \text{ contains at least 100 triangles}) = 1.$

[You may assume Markov and Chebychev without proof]

(b) Let $P = P_n$ be a monotone graph property. Define what it means for a function $p^*(n)$ to be a *threshold function* for P.

(c) Let $P = P_n$ be a monotone graph property and let $p(n) \in (0,1)$ be a sequence for which p(n) = o(1) and

$$\mathbb{P}_{p(n)}(G \text{ satisfies } \mathbf{P}) = 1/10$$

for all n, where $G \sim G(n, p)$. Show that p(n) is a threshold function for P.

(d) For this part you may assume, without proof, the following theorem:

If $p \ge 10(\log n)/n$ then $G \sim G(n,p)$ contains a Hamiltonian cycle with high probability.

Show that there exists a C > 0 so that the following holds. If $p \ge C(\log n)/n$ then G contains a cycle of length ℓ for each $3 \le \ell \le n$, with high probability.

4

(a) State the regularity lemma. Make sure to state the definition of a ε -uniform pair carefully.

(b) State and prove the triangle embedding lemma.

(c) Let $p \in (0,1)$ and $\varepsilon > 0$ be fixed and let $G \sim G(n,p)$. Show that, with high probability,

$$(p-\varepsilon)|A||B| \leqslant e(A,B) \leqslant (p+\varepsilon)|A||B|$$

for all disjoint $A, B \subseteq V(G)$ with $|A|, |B| \ge n/\log n$.

[You may use Chernoff's inequality, without proof, so long as you state it. You may also use Markov's inequality without proof]

(d) Let $p \in (0,1)$ be fixed and let $G \sim G(n,p)$. Show that, for all $\varepsilon > 0$, the largest triangle-free subgraph of G has at most $(1 + \varepsilon)pn^2/4$ edges, with high probability.

[You may use Turán's theorem without proof]

END OF PAPER