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(a) What is a Kripke model?

(b) State the Completeness Theorem for the Kripke semantics of IPC.

(c) By adequately constructing a Kripke model, show that (¬p → p) → p is not
intuitionistically valid.

The formulae of the implication-free fragment IPC \ {→} of IPC are those for which only
the connectives ∧,∨,⊥ and > appear; its rules are those of IPC, except with the rules
for (→)-introduction and (→)-elimination removed and the rule allowing one to conclude
Γ ` > for any Γ added.

(d) Show that φ∧(ψ∨χ) `IPC\{→} (φ∧ψ)∨(φ∧χ) and (φ∧ψ)∨(φ∧χ) `IPC\{→} φ∧(ψ∨χ)
for all implication-free formulae φ, ψ and χ.

[You may use the Curry-Howard correspondence without proof.]

(e) Prove that IPC satisfies the disjunction property: if `IPC φ∨ψ, then `IPC φ or `IPC ψ.

(f) Show that if a proposition is forced by all finite Kripke models, then it is intuitionist-
ically valid.

[In parts (e) and (f) you may assume completeness of the Kripke semantics without proof.]
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(a) State and prove the Overspill Lemma for models of Peano arithmetic.

(b) Let M be a nonstandard model of Peano arithmetic. Is there a formula φ(x) in the
language of arithmetic such that M |= φ(n) iff n is a standard natural number? Justify
your answer.

(c) Define what it means for a simply typed λ-term M to be in β-normal form.

(d) State the Weak Normalisation Theorem for the simply typed λ-calculus.

(e) Does every untyped λ-term admit a reduction to β-normal form? Justify your answer.

(f) Let F be a fixed point combinator in the untyped λ-calculus. Show that there can
be no context Γ assigning a type to all the variables in F and a simple type φ such that
Γ  F : φ in the simply typed λ-calculus.

[You may assume any results from the lectures that you accurately state without proof.]
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(a) Let L be a distributive lattice. What is a prime filter of L?

(b) Describe the construction of the Priestley dual space L̂ of L.

[You do not need to show any of its properties.]

(c) State Stone’s Prime Filter-Ideal Lemma.

(d) Let H be a Heyting algebra and Ĥ be its Priestley dual space. Show that the identity
(a⇒ b)∗ = (↑ (a∗ \ b∗)){ holds for all a, b ∈ H, where ⇒ denotes the Heyting implication
of H and (−)∗ : H → ClpD(Ĥ) is the Stone map.

(e) Show that if an implication-free formula φ is valid according to (lattice) valuations in
any topological space, then it is provable in the implication-free fragment of IPC.

[You may assume any results that you accurately state from either the lectures or
elsewhere in this exam without proof.]
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