MAMA/119, NST3AS/119, MAAS/119

MAT3 MATHEMATICAL TRIPOS Part III

Monday, 12 June, 2023 $\quad 1:30~\mathrm{pm}$ to $4:30~\mathrm{pm}$

PAPER 119

CATEGORY THEORY

Before you begin please read these instructions carefully

Candidates have THREE HOURS to complete the written examination.

Attempt no more than **FOUR** questions. There are **SIX** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

SPECIAL REQUIREMENTS None

Cover sheet Treasury tag Script paper Rough paper

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

 $\mathbf{2}$

1 Explain carefully what is meant by a *representation* of a functor $F : \mathcal{C} \to \mathbf{Set}$, where \mathcal{C} is locally small. Prove that representations are unique up to isomorphism if they exist.

Define the 'arrow category' $(B \downarrow F)$ where $F : \mathcal{C} \to \mathcal{D}$ is a functor and B is an object of \mathcal{D} , and state a criterion in terms of these categories for the existence of a left adjoint to F.

If \mathcal{C} is locally small, show that $F: \mathcal{C} \to \mathbf{Set}$ is representable if and only if $(1 \downarrow F)$ has an initial object, where 1 denotes a singleton set. Hence show that if \mathcal{C} is also cocomplete, then $F: \mathcal{C} \to \mathbf{Set}$ is representable if and only if it has a left adjoint.

Give an example of a complete locally small category C and a representable functor $C \rightarrow \mathbf{Set}$ which does not have a left adjoint. [*Hint*: a representable functor preserves all limits which exist in its domain.]

2 Define a *balanced* category. If $F : \mathcal{C} \to \mathcal{D}$ is a faithful functor and \mathcal{C} is balanced, prove that F reflects isomorphisms.

Let $(F: \mathcal{C} \to \mathcal{D} \dashv G: \mathcal{D} \to \mathcal{C})$ be an adjunction with unit η and counit ϵ . Show that F is faithful if and only if η is a pointwise monomorphism.

Now suppose that C is balanced, and that every morphism of \mathcal{D} factors as a strong epimorphism followed by a monomorphism. Show that η and ϵ are both pointwise monic if and only if F is full and faithful and its image is closed under strong quotients in \mathcal{D} (that is, if $FA \twoheadrightarrow B$ is a strong epimorphism, then $B \cong FA'$ for some A').

By considering a suitable non-balanced category, give an example of an adjunction whose unit and counit are both pointwise monic but whose left adjoint is not full.

3 Define the terms *diagram*, *cone* over a diagram and *limit* of a diagram. Show that if a category has small products and equalizers then it has all small limits.

A functor $F: I \to J$ between small categories is called *initial* if, for every object jof J, the category $(F \downarrow j)$ is (nonempty and) connected. If F is initial, show that for any diagram $D: J \to C$ the functor which sends $(A, (\gamma_j \mid j \in \text{ob } J))$ to $(A, (\gamma_{Fi} \mid i \in \text{ob } I))$ is an isomorphism from the category of cones over D to that of cones over DF. Deduce that if C has limits of shape I then it also has limits of shape J, and the diagram

commutes up to isomorphism. Conversely, if this diagram commutes for $\mathcal{C} = \mathbf{Set}^{\mathrm{op}}$, show that F is initial.

Part III, Paper 119

4 Let $F: \mathbf{Set} \to \mathbf{Set}$ be a functor preserving all finite limits and colimits. Show that there is a unique natural transformation $\alpha: 1_{\mathbf{Set}} \to F$, and that it is (pointwise) monic. Show also that F preserves countable coproducts. [*Hint*: consider pullback diagrams of the form

you may assume that $\mathbb N$ is characterized up to isomorphism in \mathbf{Set} by the existence of diagrams

$$1 \xrightarrow{0} \mathbb{N} \xleftarrow{s} \mathbb{N} \text{ and } \mathbb{N} \xrightarrow{s} \mathbb{N} \xrightarrow{s} 1$$

which are respectively a coproduct and a coequalizer.]

Now suppose A is any set for which α_A is not bijective. Show that there is a countably complete non-principal ultrafilter on A (that is, a family U of subsets of A satisfying (i) $A' \in U, A' \subseteq A'' \Rightarrow A'' \in U$, (ii) for every A', just one of A' and $A \setminus A'$ is in U, (iii) U is closed under countable intersections, and (iv) no finite sets are in U). [Hint: given any $x \in FA$ not in the image of α_A , consider those A' for which x is in the image of $FA' \to FA$.]

Conversely, if A is any set supporting such an ultrafilter U, show that the functor $F: \mathbf{Set} \to \mathbf{Set}$ defined by $FB = B^A / \sim_U$ (where the equivalence relation \sim_U identifies f and $g: A \rightrightarrows B$ if and only if $\{a \in A \mid f(a) = g(a)\}$ is in U) preserves finite limits and countable coproducts, and is not isomorphic to the identity functor.

UNIVERSITY OF CAMBRIDGE

5 Explain what is meant by an *exponentiable* object in a category with finite products, and show that the class of exponentiable objects is closed under finite products.

Let **Met** denote the category of metric spaces and nonexpansive maps (that is, functions $f: X \to Y$ satisfying $d(f(x), f(y)) \leq d(x, y)$ for all $x, y \in X$), and write **Met**_b for the full subcategory of bounded spaces (those in which the metric takes values in some finite interval $[0, R] \subseteq \mathbb{R}$). Show that **Met** and **Met**_b have finite products. [*Hint*: consider the smallest metric on $X \times Y$ that makes the projections to X and Y nonexpansive.]

If X and Y are bounded metric spaces, we define a 'distance function' \overline{d} on the set [X, Y] of nonexpansive maps $X \to Y$ by

$$d(f,g) = \sup \left\{ d(f(x), g(y)) \mid x, y \in X, d(x,y) < d(f(x), g(y)) \right\}$$

Show that if \overline{d} is a metric, then it makes [X, -] into a functor right adjoint to $(-) \times X$: $\mathbf{Met}_b \to \mathbf{Met}_b$.

A metric space X is called *interpolating* if, whenever we have $x, y \in X$ with d(x, y) = r + s, we can find $z \in X$ with d(x, z) = r and d(z, y) = s. Show that if X is interpolating then the function \overline{d} defined above satisfies the triangle inequality, and deduce that interpolating spaces are exponentiable in **Met**_b.

6 Define the notion of a *local operator* j in a topos \mathcal{E} , and explain what is meant by the terms *j*-dense monomorphism and *j*-sheaf. Also define the closed-subobject classifier Ω_j , and prove that it is a *j*-sheaf.

Show that the following conditions on a local operator j are equivalent:

- (i) The reflector $L: \mathcal{E} \to \mathbf{sh}_i(\mathcal{E})$ preserves the subobject classifier.
- (ii) The canonical epimorphism $\Omega \twoheadrightarrow \Omega_j$ is *j*-codense, i.e. the reflector $L : \mathcal{E} \to \mathbf{sh}_j(\mathcal{E})$ maps it to an isomorphism.
- (iii) The canonical monomorphism $\Omega_j \to \Omega$ is *j*-dense.
- (iv) Every monomorphism $A' \to A$ in \mathcal{E} can be factored (not necessarily uniquely) as $A' \to A'' \to A$, where $A' \to A''$ is *j*-closed and $A'' \to A$ is *j*-dense.

END OF PAPER