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1 Define an almost complex structure J arising from the atlas of complex local
coordinates on a complex manifold X. Show that J is well-defined independent of the
choice of local coordinates.

Define the differential forms of type (p, q) on X and the operators ∂ and ∂̄ for
complex differential forms. Show directly from the definitions that ∂̄ ᾱ = ∂α for all
complex differential forms α.

Recall that dc = i(∂̄ − ∂). Show that dc = J−1dJ .

What is a holomorphic vector field on a complex manifold? Let ϕ0 be a projection
sending each vector z = (z0, z1, . . . , zn) ∈ Cn+1 with z0 6= 0 to the intersection of the
complex line z0:z1: . . . :zn with U0 = {z ∈ Cn+1 | z0 = 1}. For a ∈ Cn+1 with a0 6= 0, show
that
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Show that if ξ(z) is a linear homogeneous function, then the image under dφ0 of a vector
field ξ(z)∂/∂zj on Cn+1 extends to a well-defined holomorphic vector field on CPn. By
considering an appropriate vector field on Cn+1, or otherwise, show that CPn admits a
holomorphic vector field vanishing only at finitely many points.

2 Define the terms irreducible hypersurface and local defining function of a hyper-
surface, explaining why a local defining function exists at each point. What is a divisor
on a complex manifold? Explain what is meant by the holomorphic line bundle [D] asso-
ciated to a divisor D. You should state clearly the auxiliary properties of local rings of
holomorphic functions that you require.

Show that KCPn ∼= [−(n+ 1)H], where H ⊂ CPn is a hyperplane.

Let V be a connected complex submanifold of CPn given by the vanishing of a
homogeneous polynomial p on Cn+1 with deg p = k > 0. Suppose that (dp)z 6= 0 whenever
p(z) = 0 and z 6= 0. Determine the canonical bundle KV in terms of an appropriate divisor
on V .

Let S be a compact connected Riemann surface with P,Q ∈ S two distinct points
and [P ], [Q] the respective holomorphic line bundles over S. Let sP and sQ be holomorphic
sections of [P ] and [Q], respectively, such that the divisors of these sections are (sP ) = P
and (sQ) = Q. Show that if the holomorphic line bundles [P ] and [Q] are isomorphic then
x ∈ S → sP (x) : sQ(x) ∈ CP 1 is a well-defined biholomorphic map.

[The adjunction formula can be assumed if accurately stated.]
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3 Let X be a Hermitian manifold. What is a real (1, 1)-form on X? What is a positive
real (1, 1)-form on X?

Let L → X be a holomorphic line bundle with Hermitian inner product on the
fibres. Define the terms holomorphic local trivialization of L, unitary connection on L, the
Chern connection on L. If A is the Chern connection on L, show that iF (A) is a real
(1, 1)-form, where F (A) denotes the curvature form of A.

Let L̂ be another holomorphic line bundle over X with Â a connection on L̂. Explain
carefully what is meant by the induced connection A⊗Â on L⊗L̂. Show that if iF (A) and
iF (Â) are positive real (1, 1)-forms, then the form iF (A⊗ Â) is a positive real (1, 1)-form
too.

Show that if ϕ and ψ are positive real (1, 1)-forms on X and dimCX > 2, then
(ϕ ∧ ψ)(ξ, η, ξ̄, η̄) is positive at all points x ∈ X and all linearly independent pairs of
complex tangent vectors ξ, η of type (1, 0) at x.

[Standard properties of connections on complex vector bundles over smooth manifolds may
be assumed if accurately stated.
If needed, you may assume that if A and B are Hermitian matrices and some real linear
combination of A and B is positive definite, then there is a non-singular matrix C such
that C̄tAC and C̄tBC are diagonal.]

4 Let X be a compact Kähler manifold. Define the Hodge ∗-operator for complex
differential forms on X, explaining briefly the auxiliary concepts you require. Define
the operators d∗, ∂̄∗, the Laplacian ∆ = ∆d and the complex Laplacian ∆∂̄ . Show that
∆ = 2∆∂̄ .

Show that if α is a ∆∂̄-harmonic differential form on X, then the form α ∧ ωk is
again ∆∂̄-harmonic for all k = 1, 2, . . ., where ω is the Kähler form on X.

State the Hodge decomposition theorem for (p, q)-forms on a Hermitian manifold.

Let η be a ∂̄-exact (p, q)-form on X. Show that η = ∂̄∂̄∗β for some (p, q)-form β.
If η is also ∂-closed, prove that ∂∂̄∗β is harmonic and that ∂̄∗β is ∂-closed. Finally, show
that such an η can be expressed as η = ∂̄∂φ, for some φ ∈ Ωp−1,q−1(X).

[You can assume that ∂̄∗ is the formal L2-adjoint of ∂̄ on a Hermitian manifold. You can
also assume the identity [Λ, ∂̄] = −i∂∗ on Kähler manifolds if you define what Λ is.]
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