MAMA/118, NST3AS/118, MAAS/118

MAT3 MATHEMATICAL TRIPOS Part III

Thursday, 8 June, 2023 $\quad 1{:}30~\mathrm{pm}$ to $4{:}30~\mathrm{pm}$

PAPER 118

COMPLEX MANIFOLDS

Before you begin please read these instructions carefully

Candidates have THREE HOURS to complete the written examination.

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

SPECIAL REQUIREMENTS None

Cover sheet Treasury tag Script paper Rough paper

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF CAMBRIDGE

1 Define an *almost complex structure* J arising from the atlas of complex local coordinates on a complex manifold X. Show that J is well-defined independent of the choice of local coordinates.

Define the differential forms of type (p,q) on X and the operators ∂ and $\overline{\partial}$ for complex differential forms. Show directly from the definitions that $\overline{\partial} \overline{\alpha} = \overline{\partial \alpha}$ for all complex differential forms α .

Recall that $d^c = i(\bar{\partial} - \partial)$. Show that $d^c = J^{-1}dJ$.

What is a holomorphic vector field on a complex manifold? Let φ_0 be a projection sending each vector $z = (z_0, z_1, \dots, z_n) \in \mathbb{C}^{n+1}$ with $z_0 \neq 0$ to the intersection of the complex line $z_0:z_1:\ldots:z_n$ with $U_0 = \{z \in \mathbb{C}^{n+1} | z_0 = 1\}$. For $a \in \mathbb{C}^{n+1}$ with $a_0 \neq 0$, show that

$$(d\varphi_0)_a \left(\frac{\partial}{\partial z_j}\right) = \begin{cases} \frac{1}{a_0} \frac{\partial}{\partial z_j} & \text{if } j \neq 0\\ \frac{-1}{a_0^2} \sum_{k=1}^n a_k \frac{\partial}{\partial z_k} & \text{if } j = 0. \end{cases}$$

Show that if $\xi(z)$ is a linear homogeneous function, then the image under $d\phi_0$ of a vector field $\xi(z)\partial/\partial z_j$ on \mathbb{C}^{n+1} extends to a well-defined holomorphic vector field on $\mathbb{C}P^n$. By considering an appropriate vector field on \mathbb{C}^{n+1} , or otherwise, show that $\mathbb{C}P^n$ admits a holomorphic vector field vanishing only at finitely many points.

2 Define the terms *irreducible hypersurface* and *local defining function* of a hypersurface, explaining why a local defining function exists at each point. What is a *divisor* on a complex manifold? Explain what is meant by the holomorphic line bundle [D] associated to a divisor D. You should state clearly the auxiliary properties of local rings of holomorphic functions that you require.

Show that $K_{\mathbb{C}P^n} \cong [-(n+1)H]$, where $H \subset \mathbb{C}P^n$ is a hyperplane.

Let V be a connected complex submanifold of $\mathbb{C}P^n$ given by the vanishing of a homogeneous polynomial p on \mathbb{C}^{n+1} with deg p = k > 0. Suppose that $(dp)_z \neq 0$ whenever p(z) = 0 and $z \neq 0$. Determine the canonical bundle K_V in terms of an appropriate divisor on V.

Let S be a compact connected Riemann surface with $P, Q \in S$ two distinct points and [P], [Q] the respective holomorphic line bundles over S. Let s_P and s_Q be holomorphic sections of [P] and [Q], respectively, such that the divisors of these sections are $(s_P) = P$ and $(s_Q) = Q$. Show that if the holomorphic line bundles [P] and [Q] are isomorphic then $x \in S \to s_P(x) : s_Q(x) \in \mathbb{C}P^1$ is a well-defined biholomorphic map.

[The adjunction formula can be assumed if accurately stated.]

3

3 Let X be a Hermitian manifold. What is a real (1, 1)-form on X? What is a positive real (1, 1)-form on X?

Let $L \to X$ be a holomorphic line bundle with Hermitian inner product on the fibres. Define the terms holomorphic local trivialization of L, unitary connection on L, the Chern connection on L. If A is the Chern connection on L, show that iF(A) is a real (1,1)-form, where F(A) denotes the curvature form of A.

Let \widehat{L} be another holomorphic line bundle over X with \widehat{A} a connection on \widehat{L} . Explain carefully what is meant by the induced connection $A \otimes \widehat{A}$ on $L \otimes \widehat{L}$. Show that if iF(A) and $iF(\widehat{A})$ are positive real (1, 1)-forms, then the form $iF(A \otimes \widehat{A})$ is a positive real (1, 1)-form too.

Show that if φ and ψ are positive real (1,1)-forms on X and $\dim_{\mathbb{C}} X \ge 2$, then $(\varphi \land \psi)(\xi, \eta, \overline{\xi}, \overline{\eta})$ is positive at all points $x \in X$ and all linearly independent pairs of complex tangent vectors ξ, η of type (1,0) at x.

[Standard properties of connections on complex vector bundles over smooth manifolds may be assumed if accurately stated.

If needed, you may assume that if A and B are Hermitian matrices and some real linear combination of A and B is positive definite, then there is a non-singular matrix C such that $\overline{C}^t A C$ and $\overline{C}^t B C$ are diagonal.]

4 Let X be a compact Kähler manifold. Define the *Hodge* *-operator for complex differential forms on X, explaining briefly the auxiliary concepts you require. Define the operators d^* , $\bar{\partial}^*$, the Laplacian $\Delta = \Delta_d$ and the complex Laplacian $\Delta_{\bar{\partial}}$. Show that $\Delta = 2\Delta_{\bar{\partial}}$.

Show that if α is a $\Delta_{\bar{\partial}}$ -harmonic differential form on X, then the form $\alpha \wedge \omega^k$ is again $\Delta_{\bar{\partial}}$ -harmonic for all $k = 1, 2, \ldots$, where ω is the Kähler form on X.

State the Hodge decomposition theorem for (p, q)-forms on a Hermitian manifold.

Let η be a $\bar{\partial}$ -exact (p,q)-form on X. Show that $\eta = \bar{\partial}\bar{\partial}^*\beta$ for some (p,q)-form β . If η is also ∂ -closed, prove that $\partial\bar{\partial}^*\beta$ is harmonic and that $\bar{\partial}^*\beta$ is ∂ -closed. Finally, show that such an η can be expressed as $\eta = \bar{\partial}\partial\phi$, for some $\phi \in \Omega^{p-1,q-1}(X)$.

[You can assume that $\bar{\partial}^*$ is the formal L^2 -adjoint of $\bar{\partial}$ on a Hermitian manifold. You can also assume the identity $[\Lambda, \bar{\partial}] = -i\partial^*$ on Kähler manifolds if you define what Λ is.]

END OF PAPER