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1 Let κ < λ where κ is measurable and λ is inaccessible. Let U be a κ-complete
nonprincipal ultrafilter on κ. Let N := (Vλ)κ/U be the ultrapower of Vλ modulo U with
its elementary embedding x 7→ [constx].

[Throughout this question, you may assume without proof that this map is an
elementary embedding and that Vκ+1 ⊆M for the set M constructed in (a). Furthermore,
you may assume basic absoluteness claims without proof, provided that you state them
precisely and correctly.]

(a) Explain how to construct a transitive set M ⊆ Vλ and an elementary embedding
j : Vλ → M . For f ∈ (Vλ)κ, give a definition of (f); define the map j and explain
why it is elementary.

[You may use without proof all claims relevant for the construction that were proved
in the lectures, provided that you state them precisely and correctly.]

(b) Define what the critical point of an elementary embedding between models of set theory
is and prove that κ is the critical point of the embedding j from (a).

(c) Explain in the context of the elementary embedding j from (a) what a reflection
argument is and what it means that a property of κ reflects below κ. Give an example
of a property of κ that reflects below κ in this context and prove your claim.

(d) State the Keisler Extension Property and prove that an inaccessible cardinal with the
Keisler Extension Property cannot be the least inaccessible cardinal.

2 Let T and S be first-order theories extending ZFC.

(a) Define T 6Cons S and T <Cons S in the base theory ZFC.

(b) Define a sequence of theories {Ti ; i ∈ N} and a theory T∞ such that T0 = ZFC + IC
and (assuming the consistency of all involved theories)

T0 <Cons T1 <Cons T2 <Cons ... <Cons T∞.

Justify your claim.

[You may use theorems proved in the lectures, provided that you state them precisely
and correctly.]
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3 Let κ < λ where κ is measurable and λ is inaccessible.

(a) Construct a transitive set M with κ ∈M and |M | = κ such that

(M,∈) |= ZFC + “κ is measurable”.

(b) Is the property “α is a cardinal” absolute between M and Vλ?

(c) Is it possible to find an M as in (a) such that the property “α is inaccessible” is
absolute between M and Vλ?

Justify your claims for all parts of the question.

[You may use the Tarski-Vaught test for elementarity without proof. Also, you may
use basic absoluteness statements without proof, provided you state them precisely and
correctly.]
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