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1 Let X and Y be smooth manifolds of dimensions n and m respectively, and let
F : X → Y be a smooth map. Given a vector field w on Y , a lift of w to X is a vector
field v on X such that for all p ∈ X we have DpF (v(p)) = w(F (p)).

(a) Define what it means for F to be a submersion. State and prove a result
describing the local form of submersions in coordinates, and deduce that if F is a
submersion then for all q ∈ Y the subset F−1(q) ⊂ X is a submanifold.

(b) Show that if F is a submersion then for every vector field w on Y there exists a
lift v of w to X, which may be chosen to satisfy v(p) = 0 whenever w(F (p)) = 0.

(c) For each point q1 ∈ Y , show that there exists a neighbourhood U of q1 with the
following property: for all points q2 ∈ U there exists a compactly supported vector field
w on Y whose flow Ψt satisfies Ψ1(q1) = q2.

Now assume that F is a submersion and is proper, meaning that preimages of
compact sets are compact. Define an equivalence relation ∼ on Y by setting q1 ∼ q2 if
and only if the submanifolds F−1(q1) and F−1(q2) are diffeomorphic.

(d) Show that the equivalence classes of ∼ are open, and conclude that if Y is
connected then for all q1, q2 ∈ Y the submanifolds F−1(q1) and F−1(q2) are diffeomorphic.
[You may assume without proof that compactly supported vector fields are complete.]

(e) Show that this conclusion may fail if we drop the condition that F is proper.
Show that it may also fail if instead we weaken the condition that F is a submersion to
‘for all q ∈ Y the subset F−1(q) ⊂ X is a submanifold’.

2 Let X be a smooth manifold.

(a) Write down an expression for the exterior derivative d : Ω∗(X) → Ω∗+1(X) in
local coordinates and show that it squares to zero and satisfies the graded Leibniz rule.
Show that d commutes with pullback on 0-forms, and hence on r-forms for any r.

(b) Define the de Rham cohomology H∗
dR(X). Show that if F : X → Y is a smooth

map then pullback F ∗ induces a well-defined map H∗
dR(Y )→ H∗

dR(X). Show further that
if F0, F1 : X → Y are smoothly homotopic then the induced maps on H∗

dR agree. Deduce
that if F is a homotopy equivalence then the induced map on H∗

dR is an isomorphism.
[You may assume Cartan’s magic formula without proof.]

Now consider complex projective space CPn, and for each i ∈ {0, . . . , n} let

Ui = {[z0 : · · · : zn] ∈ CPn : zi 6= 0}

be the standard open set. Let U = U0 and V = U1 ∪ · · · ∪ Un.

(c) By considering the restriction of forms to U and V , prove by induction on n
that H i

dR(CPn) = 0 for all odd i. [You may assume that H i
dR(S2n−1) = 0 for i 6= 0, 2n−1.

You may not use any results from outside the course.]
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3 Let π : E → B be a vector bundle of rank k.

(a) In terms of local connection 1-forms, define what is meant by a connection A
on E, its associated exterior covariant derivative operator dA, and its curvature F . Show
that (dA)2σ = F ∧ σ for any E-valued form σ.

Now suppose that E is equipped with a connection A. Let A∨ and End(A) be the
induced connections on E∨ and End(E) respectively.

(b) Write down expressions for the exterior covariant derivative operators dA∨
and

dEnd(A) in trivialisations. State and prove the Bianchi identity for F . State and prove the
appropriate Leibniz rule relating dA and dEnd(A) acting on sections of E and End(E).

(c) Briefly define the parallel transport map PA
γ : Eγ(0) → Eγ(1) associated to a path

γ : [0, 1] → B. By considering the reversed path show that this map is an isomorphism.

Find and prove an expression for PEnd(A)
γ : End(Eγ(0)) → End(Eγ(1)) in terms of PA

γ .

(d) Suppose that B is path-connected and that End(E) admits a global section
µ which is horizontal with respect to End(A). Assuming that µ(b) ∈ End(Eb) is an
isomorphism for some b ∈ B, show that it is an isomorphism for all b.

4 Let (X, g) be a Riemannian manifold and let ∇ be an arbitrary connection on
TX. As usual, we write the components of the local connection 1-forms in coordinate
trivialisations as Γi

jk.

(a) Define the solder form θ and torsion T of ∇. Hence express, with proof, what
it means for ∇ to be torsion-free in terms of the Γi

jk.

(b) Define what it means for ∇ to be orthogonal. By considering ∇(g(u, v)) for
arbitrary vector fields u and v, and applying a suitable Leibniz rule, show that ∇ is
orthogonal if and only if

Γjki + Γkji =
∂gjk
∂xi

.

Now assume that (X, g) is compact and oriented.

(c) Define the inner product 〈·, ·〉X and codifferential δ on Ω∗(X) in terms of the
Hodge star operator ? and its inverse. Show that δ is adjoint to d.

(d) Define what it means for a form α to be harmonic and show that this holds if
and only if α is closed and coclosed. State without proof the relationship between Hp

dR(X)
and the space Hp(X) of harmonic p-forms on (X, g).

Finally, take X to be the n-torus Tn = Rn/Zn, with local coordinates x1, . . . , xn

induced from standard Euclidean coordinates on Rn. Equip X with the metric
∑

i(dx
i)2

and orientation ∂x1 ∧ · · · ∧ ∂xn .

(e) Write down the action of ? on dxi. Show that if a 1-form α = αi dxi is harmonic
then each αi is harmonic. Hence show that H1

dR(Tn) ∼= Rn.

END OF PAPER
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