MAT3 MATHEMATICAL TRIPOS Part III

Monday, 5 June, 2023 $\,$ 9:00 am to 12:00 pm $\,$

PAPER 115

DIFFERENTIAL GEOMETRY

Before you begin please read these instructions carefully

Candidates have THREE HOURS to complete the written examination.

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

SPECIAL REQUIREMENTS None

Cover sheet Treasury tag Script paper Rough paper

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 Let X and Y be smooth manifolds of dimensions n and m respectively, and let $F: X \to Y$ be a smooth map. Given a vector field w on Y, a *lift* of w to X is a vector field v on X such that for all $p \in X$ we have $D_pF(v(p)) = w(F(p))$.

2

(a) Define what it means for F to be a submersion. State and prove a result describing the local form of submersions in coordinates, and deduce that if F is a submersion then for all $q \in Y$ the subset $F^{-1}(q) \subset X$ is a submanifold.

(b) Show that if F is a submersion then for every vector field w on Y there exists a lift v of w to X, which may be chosen to satisfy v(p) = 0 whenever w(F(p)) = 0.

(c) For each point $q_1 \in Y$, show that there exists a neighbourhood U of q_1 with the following property: for all points $q_2 \in U$ there exists a compactly supported vector field w on Y whose flow Ψ^t satisfies $\Psi^1(q_1) = q_2$.

Now assume that F is a submersion and is proper, meaning that preimages of compact sets are compact. Define an equivalence relation \sim on Y by setting $q_1 \sim q_2$ if and only if the submanifolds $F^{-1}(q_1)$ and $F^{-1}(q_2)$ are diffeomorphic.

(d) Show that the equivalence classes of \sim are open, and conclude that if Y is connected then for all $q_1, q_2 \in Y$ the submanifolds $F^{-1}(q_1)$ and $F^{-1}(q_2)$ are diffeomorphic. [You may assume without proof that compactly supported vector fields are complete.]

(e) Show that this conclusion may fail if we drop the condition that F is proper. Show that it may also fail if instead we weaken the condition that F is a submersion to 'for all $q \in Y$ the subset $F^{-1}(q) \subset X$ is a submanifold'.

2 Let X be a smooth manifold.

(a) Write down an expression for the exterior derivative $d : \Omega^*(X) \to \Omega^{*+1}(X)$ in local coordinates and show that it squares to zero and satisfies the graded Leibniz rule. Show that d commutes with pullback on 0-forms, and hence on *r*-forms for any *r*.

(b) Define the de Rham cohomology $H^*_{dR}(X)$. Show that if $F: X \to Y$ is a smooth map then pullback F^* induces a well-defined map $H^*_{dR}(Y) \to H^*_{dR}(X)$. Show further that if $F_0, F_1: X \to Y$ are smoothly homotopic then the induced maps on H^*_{dR} agree. Deduce that if F is a homotopy equivalence then the induced map on H^*_{dR} is an isomorphism. [You may assume Cartan's magic formula without proof.]

Now consider complex projective space \mathbb{CP}^n , and for each $i \in \{0, \ldots, n\}$ let

$$U_i = \{ [z_0 : \cdots : z_n] \in \mathbb{CP}^n : z_i \neq 0 \}$$

be the standard open set. Let $U = U_0$ and $V = U_1 \cup \cdots \cup U_n$.

(c) By considering the restriction of forms to U and V, prove by induction on n that $H^i_{dR}(\mathbb{CP}^n) = 0$ for all odd i. [You may assume that $H^i_{dR}(S^{2n-1}) = 0$ for $i \neq 0, 2n-1$. You may not use any results from outside the course.]

UNIVERSITY OF

3

3 Let $\pi: E \to B$ be a vector bundle of rank k.

(a) In terms of local connection 1-forms, define what is meant by a connection \mathcal{A} on E, its associated exterior covariant derivative operator $d^{\mathcal{A}}$, and its curvature F. Show that $(d^{\mathcal{A}})^2 \sigma = F \wedge \sigma$ for any E-valued form σ .

Now suppose that E is equipped with a connection \mathcal{A} . Let \mathcal{A}^{\vee} and $\operatorname{End}(\mathcal{A})$ be the induced connections on E^{\vee} and $\operatorname{End}(E)$ respectively.

(b) Write down expressions for the exterior covariant derivative operators $d^{\mathcal{A}^{\vee}}$ and $d^{\operatorname{End}(\mathcal{A})}$ in trivialisations. State and prove the Bianchi identity for F. State and prove the appropriate Leibniz rule relating $d^{\mathcal{A}}$ and $d^{\operatorname{End}(\mathcal{A})}$ acting on sections of E and $\operatorname{End}(E)$.

(c) Briefly define the *parallel transport* map $\mathcal{P}_{\gamma}^{\mathcal{A}} : E_{\gamma(0)} \to E_{\gamma(1)}$ associated to a path $\gamma : [0,1] \to B$. By considering the reversed path show that this map is an isomorphism. Find and prove an expression for $\mathcal{P}_{\gamma}^{\operatorname{End}(\mathcal{A})} : \operatorname{End}(E_{\gamma(0)}) \to \operatorname{End}(E_{\gamma(1)})$ in terms of $\mathcal{P}_{\gamma}^{\mathcal{A}}$.

(d) Suppose that B is path-connected and that $\operatorname{End}(E)$ admits a global section μ which is horizontal with respect to $\operatorname{End}(\mathcal{A})$. Assuming that $\mu(b) \in \operatorname{End}(E_b)$ is an isomorphism for some $b \in B$, show that it is an isomorphism for all b.

4 Let (X,g) be a Riemannian manifold and let ∇ be an arbitrary connection on TX. As usual, we write the components of the local connection 1-forms in coordinate trivialisations as Γ^i_{ik} .

(a) Define the solder form θ and torsion T of ∇ . Hence express, with proof, what it means for ∇ to be torsion-free in terms of the $\Gamma^i_{\ ik}$.

(b) Define what it means for ∇ to be *orthogonal*. By considering $\nabla(g(\mathbf{u}, \mathbf{v}))$ for arbitrary vector fields \mathbf{u} and \mathbf{v} , and applying a suitable Leibniz rule, show that ∇ is orthogonal if and only if

$$\Gamma_{jki} + \Gamma_{kji} = \frac{\partial g_{jk}}{\partial x^i}.$$

Now assume that (X, g) is compact and oriented.

(c) Define the inner product $\langle \cdot, \cdot \rangle_X$ and *codifferential* δ on $\Omega^*(X)$ in terms of the Hodge star operator \star and its inverse. Show that δ is adjoint to d.

(d) Define what it means for a form α to be *harmonic* and show that this holds if and only if α is closed and coclosed. State without proof the relationship between $H^p_{dR}(X)$ and the space $\mathcal{H}^p(X)$ of harmonic *p*-forms on (X, g).

Finally, take X to be the *n*-torus $T^n = \mathbb{R}^n / \mathbb{Z}^n$, with local coordinates x^1, \ldots, x^n induced from standard Euclidean coordinates on \mathbb{R}^n . Equip X with the metric $\sum_i (\mathrm{d}x^i)^2$ and orientation $\partial_{x^1} \wedge \cdots \wedge \partial_{x^n}$.

(e) Write down the action of \star on dx^i . Show that if a 1-form $\alpha = \alpha_i dx^i$ is harmonic then each α_i is harmonic. Hence show that $H^1_{dR}(T^n) \cong \mathbb{R}^n$.

END OF PAPER

Part III, Paper 115