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Exhibit each of the following spaces as a finite cell complex. [You do not need to give
a detailed proof.] Using the cellular chain complex or otherwise, compute their homology
with coefficients in Z and Z/2.

1. Real projective space RPn.

2. The space T 2/ ∼, where ∼ is the smallest equivalence relation containing (z1, z2) ∼
(−z1, z2) for all (z1, z2) ∈ S1 × S1. [Here z denotes the complex conjugate of z.]

3. The space T 3/ ∼, where∼ is the smallest equivalence relation containing (z1, z2, z3) ∼
(−z1, z2, z3) for all (z1, z2, z3) ∈ S1 × S1 × S1.

2 Suppose A ⊂ U ⊂ X. If the inclusion map i : A → U is a homotopy equivalence,
prove H∗(X,A) ∼= H∗(X,U).

State the excision property for singular homology. Define what is meant by a good
pair and state the collapsing a pair theorem. Taking the excision property as given, prove
the collapsing a pair theorem.

Assume n > 2. If f : (Dn, ∂Dn) → (Dn, ∂Dn), define the degree of f . Show
that deg f = deg f |∂Dn . If g : (Dn × I, ∂(Dn × I)) → (Dn × I, ∂(Dn × I)) is given by
g(x, t) = (f(x), t), show that deg g = deg f . [If you use any results about the homology or
cohomology of products, you must prove them.]

3 Let R be a commutative ring. If α ∈ Ck(X;R) and β ∈ C l(X;R), define their cup
product α ∪ β ∈ Ck+l(X;R). If α ∈ Ck(X,A;R), show that α ∪ β ∈ Ck+l(X,A;R).

If a ∈ H∗(X,A;R) and b ∈ H∗(Y ;R), define their exterior product a × b. State
conditions under which the map Φ : H∗(X,A;R) ⊗ H∗(Y ;R) → H∗(X × Y,A × Y ;R)
given by Φ(a ⊗ b) = a × b is an isomorphism. By considering RP2 × RP2 or otherwise,
show that Φ is not always an isomorphism.

If ∆ = {(x, x) |x ∈ T 2} ⊂ T 2 × T 2 = T 4, compute the cohomology ring
H∗(T 4 \∆).

4 Define what it means for a vector bundle to be R-oriented, where R is a commutative
ring. If E is an R-oriented vector bundle, define its Euler class. State the Thom
isomorphism theorem and derive the Gysin sequence from it. Explain [with proof] how
the Gysin sequence and Euler class are related.

Suppose Mm ⊂ Sn is a smooth m-dimensional submanifold of Sn, where n > 2m+1.
Let V be a tubular neighborhood of M . Express H∗(∂V ;Z/2) and H∗(Sn \M ;Z/2) in
terms of H∗(M ;Z/2).
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Let X = S2n × S2n and define

Y = {(v, w) ∈ X | d(v, w) 6 d(v,−w)}
Y ′ = {(v, w) ∈ X | d(v, w) > d(v,−w))}

where d is the usual metric on S2n induced by inclusion into R2n+1. Show that Y and Y ′

are homeomorphic to the unit disk bundle of a vector bundle over S2n. Let Z = Y ∩ Y ′.
What is H∗(Z)?

Let Homeo(X,Z) be the group of homeomorphisms f : X → X for which f(Z) = Z.
Show that Homeo(X,Z) contains a subgroup G isomorphic to D8 (the dihedral group of
order 8) and that the only element of G which is homotopic to 1X is the identity of G.

How do the elements of G act on H∗(Z)? Let H ⊂ G be the subgroup of those
g ∈ G for which g(Y ) = Y . How do the elements of H act on H∗(Y ) and H∗(Y,Z)?

Suppose n = 1. For which g ∈ G is g|Z ∼ 1Z?
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