MAT3 MATHEMATICAL TRIPOS Part III

Friday, 2 June, 2023 $-1:30~\mathrm{pm}$ to $4:30~\mathrm{pm}$

PAPER 114

ALGEBRAIC TOPOLOGY

Before you begin please read these instructions carefully

Candidates have THREE HOURS to complete the written examination.

Attempt no more than **FOUR** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

SPECIAL REQUIREMENTS None

Cover sheet Treasury tag Script paper Rough paper

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1

Exhibit each of the following spaces as a finite cell complex. [You do not need to give a detailed proof.] Using the cellular chain complex or otherwise, compute their homology with coefficients in \mathbb{Z} and $\mathbb{Z}/2$.

- 1. Real projective space \mathbb{RP}^n .
- 2. The space T^2/\sim , where \sim is the smallest equivalence relation containing $(z_1, z_2) \sim (-z_1, \overline{z_2})$ for all $(z_1, z_2) \in S^1 \times S^1$. [Here \overline{z} denotes the complex conjugate of z.]
- 3. The space T^3/\sim , where \sim is the smallest equivalence relation containing $(z_1, z_2, z_3) \sim (-z_1, \overline{z}_2, \overline{z}_3)$ for all $(z_1, z_2, z_3) \in S^1 \times S^1 \times S^1$.

2 Suppose $A \subset U \subset X$. If the inclusion map $i : A \to U$ is a homotopy equivalence, prove $H_*(X, A) \cong H_*(X, U)$.

State the *excision property* for singular homology. Define what is meant by a *good* pair and state the *collapsing a pair theorem*. Taking the excision property as given, prove the collapsing a pair theorem.

Assume $n \ge 2$. If $f : (D^n, \partial D^n) \to (D^n, \partial D^n)$, define the *degree* of f. Show that deg $f = \deg f|_{\partial D^n}$. If $g : (D^n \times I, \partial (D^n \times I)) \to (D^n \times I, \partial (D^n \times I))$ is given by g(x,t) = (f(x),t), show that deg $g = \deg f$. [If you use any results about the homology or cohomology of products, you must prove them.]

3 Let *R* be a commutative ring. If $\alpha \in C^k(X; R)$ and $\beta \in C^l(X; R)$, define their cup product $\alpha \cup \beta \in C^{k+l}(X; R)$. If $\alpha \in C^k(X, A; R)$, show that $\alpha \cup \beta \in C^{k+l}(X, A; R)$.

If $a \in H^*(X, A; R)$ and $b \in H^*(Y; R)$, define their exterior product $a \times b$. State conditions under which the map $\Phi : H^*(X, A; R) \otimes H^*(Y; R) \to H^*(X \times Y, A \times Y; R)$ given by $\Phi(a \otimes b) = a \times b$ is an isomorphism. By considering $\mathbb{RP}^2 \times \mathbb{RP}^2$ or otherwise, show that Φ is not always an isomorphism.

If $\Delta = \{(x,x) | x \in T^2\} \subset T^2 \times T^2 = T^4$, compute the cohomology ring $H^*(T^4 \setminus \Delta)$.

4 Define what it means for a vector bundle to be R-oriented, where R is a commutative ring. If E is an R-oriented vector bundle, define its *Euler class*. State the Thom isomorphism theorem and derive the Gysin sequence from it. Explain [with proof] how the Gysin sequence and Euler class are related.

Suppose $M^m \subset S^n$ is a smooth *m*-dimensional submanifold of S^n , where n > 2m+1. Let V be a tubular neighborhood of M. Express $H^*(\partial V; \mathbb{Z}/2)$ and $H^*(S^n \setminus M; \mathbb{Z}/2)$ in terms of $H^*(M; \mathbb{Z}/2)$. Let $X = S^{2n} \times S^{2n}$ and define

$$\begin{split} Y &= \{ (v,w) \in X \, | \, d(v,w) \leqslant d(v,-w) \} \\ Y' &= \{ (v,w) \in X \, | \, d(v,w) \geqslant d(v,-w)) \} \end{split}$$

3

where d is the usual metric on S^{2n} induced by inclusion into \mathbb{R}^{2n+1} . Show that Y and Y' are homeomorphic to the unit disk bundle of a vector bundle over S^{2n} . Let $Z = Y \cap Y'$. What is $H^*(Z)$?

Let Homeo(X, Z) be the group of homeomorphisms $f : X \to X$ for which f(Z) = Z. Show that Homeo(X, Z) contains a subgroup G isomorphic to D_8 (the dihedral group of order 8) and that the only element of G which is homotopic to 1_X is the identity of G.

How do the elements of G act on $H^*(Z)$? Let $H \subset G$ be the subgroup of those $g \in G$ for which g(Y) = Y. How do the elements of H act on $H^*(Y)$ and $H^*(Y, Z)$?

Suppose n = 1. For which $g \in G$ is $g|_Z \sim 1_Z$?

END OF PAPER