MAT3 MATHEMATICAL TRIPOS Part III

Monday, 5 June, 2023 $-1:30~\mathrm{pm}$ to $4:30~\mathrm{pm}$

PAPER 113

ALGEBRAIC GEOMETRY

Before you begin please read these instructions carefully

Candidates have THREE HOURS to complete the written examination.

Attempt **ALL** questions. There are **THREE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

SPECIAL REQUIREMENTS None

Cover sheet Treasury tag Script paper Rough paper

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1

- (a) Define an open immersion of schemes. Give an example of an open immersion $U \to X$ such that X is affine and U is not affine. Give an example of a nontrivial open immersion $V \to Y$ such that Y is connected and affine and V is also affine.
- (b) Let R denote the polynomial ring k[x, y] equipped with the standard grading. Let $R^{(2)}$ denote the subring of elements of even degree. Construct an isomorphism between the schemes Proj R and Proj $R^{(2)}$. Construct a closed embedding of Proj $R^{(2)}$ into \mathbb{P}^2_k .
- (c) Let k be a field. Write $\mathbb{P}^2 = \operatorname{Proj} k[x, y, z]$ and $\mathbb{A}^1 = \operatorname{Spec} k[t]$. Let $Y \subset \mathbb{P}^2 \times_k \mathbb{A}^1$ be the closed subscheme given by the ideal $(xy tz^2)$.

Let $\pi: Y \to \mathbb{A}^1$ be the morphism induced by the projection. For what points $p \in \mathbb{A}^1$ is the fibre $\pi^{-1}(p)$ an integral scheme? For which points is the fibre reduced?

$\mathbf{2}$

- (a) Define properness for a morphism of schemes. Let $\varphi : X \to Y$ be a morphism of schemes. Suppose that $\{U_i\}$ is an open cover of Y such that $\varphi^{-1}(U_i) \to U_i$ is proper for all *i*. Prove that φ is proper.
- (b) Let k be the field of complex numbers. Consider the morphism $\mathbb{A}_k^1 \to \mathbb{A}_k^1$ given in coordinates by $t \mapsto t^2$. Let $U \subset \mathbb{A}_k^1$ be the complement of the point $1 \in \mathbb{A}_k^1$. Consider the composite morphism

$$U \subset \mathbb{A}^1 \to \mathbb{A}^1.$$

Prove that the preimage of every closed point is proper, but the morphism is not proper.

(c) What is Cartier divisor? Let D be a Weil divisor on \mathbb{P}^n . Show directly from the definition that D is Cartier. It is a fact that the divisor class group of a (noetherian, integral, regular in codimension 1) scheme X coincides with that of $X \times \mathbb{A}^1$. Using this, prove that

$$\operatorname{Cl}(X \times \mathbb{P}^n) = \operatorname{Cl}(X) \oplus \mathbb{Z}.$$

3

- (a) What is a quasicoherent sheaf on a scheme? Define the pullback and pushforward operations for quasicoherent sheaves. Let $Z \to X$ be a closed immersion of noetherian schemes. Prove that the pushforward of the structure sheaf \mathcal{O}_Z is coherent. Give an example of a morphism of noetherian schemes $W \to Y$ and a coherent sheaf on W whose pushforward to Y is not coherent.
- (b) Let X be a noetherian separated scheme and let $i: Z \to X$ be a closed immersion. Let \mathcal{F} be a coherent sheaf on Z. Using Cech cohomology, prove that

$$H^{i}(X, i_{\star}\mathcal{F}) = H^{i}(Z, \mathcal{F}).$$

Now suppose additionally k is a field and X is \mathbb{P}_k^n . Using Cech cohomology prove that $H^i(Z, \mathcal{F})$ vanishes for i > n.

(c) Let k be a field and $i: X_d \hookrightarrow \mathbb{P}^n_k$ be a degree d hypersurface. Prove that the kernel of the restriction map

$$\mathcal{O}_{\mathbb{P}^n} \to i_\star \mathcal{O}_{X_d}$$

is isomorphic to the sheaf $\mathcal{O}_{\mathbb{P}^n}(-d)$. If n = 2, use this to calculate

$$h^0(X_d, \mathcal{O}_{X_d}) - h^1(X_d, \mathcal{O}_{X_d}).$$

Hence calculate $h^1(X_d, \mathcal{O}_{X_d})$. You may use any fact about the cohomology of line bundles on projective space, provided it is clearly stated.

END OF PAPER