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(a) Define an open immersion of schemes. Give an example of an open immersion
U → X such that X is affine and U is not affine. Give an example of a nontrivial
open immersion V → Y such that Y is connected and affine and V is also affine.

(b) Let R denote the polynomial ring k[x, y] equipped with the standard grading. Let
R(2) denote the subring of elements of even degree. Construct an isomorphism
between the schemes Proj R and Proj R(2). Construct a closed embedding of
Proj R(2) into P2

k.

(c) Let k be a field. Write P2 = Proj k[x, y, z] and A1 = Spec k[t]. Let Y ⊂ P2 ×k A1

be the closed subscheme given by the ideal (xy − tz2).
Let π : Y → A1 be the morphism induced by the projection. For what points p ∈ A1

is the fibre π−1(p) an integral scheme? For which points is the fibre reduced?

2

(a) Define properness for a morphism of schemes. Let ϕ : X → Y be a morphism of
schemes. Suppose that {Ui} is an open cover of Y such that ϕ−1(Ui)→ Ui is proper
for all i. Prove that ϕ is proper.

(b) Let k be the field of complex numbers. Consider the morphism A1
k → A1

k given
in coordinates by t 7→ t2. Let U ⊂ A1

k be the complement of the point 1 ∈ A1
k.

Consider the composite morphism

U ⊂ A1 → A1.

Prove that the preimage of every closed point is proper, but the morphism is not
proper.

(c) What is Cartier divisor? Let D be a Weil divisor on Pn. Show directly from the
definition that D is Cartier. It is a fact that the divisor class group of a (noetherian,
integral, regular in codimension 1) scheme X coincides with that of X ×A1. Using
this, prove that

Cl(X × Pn) = Cl(X)⊕ Z.
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(a) What is a quasicoherent sheaf on a scheme? Define the pullback and pushforward
operations for quasicoherent sheaves. Let Z → X be a closed immersion of
noetherian schemes. Prove that the pushforward of the structure sheaf OZ is
coherent. Give an example of a morphism of noetherian schemes W → Y and
a coherent sheaf on W whose pushforward to Y is not coherent.

(b) Let X be a noetherian separated scheme and let i : Z → X be a closed immersion.
Let F be a coherent sheaf on Z. Using Cech cohomology, prove that

H i(X, i?F) = H i(Z,F).

Now suppose additionally k is a field and X is Pn
k . Using Cech cohomology prove

that H i(Z,F) vanishes for i > n.

(c) Let k be a field and i : Xd ↪→ Pn
k be a degree d hypersurface. Prove that the kernel

of the restriction map
OPn → i?OXd

is isomorphic to the sheaf OPn(−d). If n = 2, use this to calculate

h0(Xd,OXd
)− h1(Xd,OXd

).

Hence calculate h1(Xd,OXd
). You may use any fact about the cohomology of line

bundles on projective space, provided it is clearly stated.
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