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(i) Let A1, . . . , Am be odd subsets of [n], with |Ai ∩Aj | even for all 1 6 i < j 6 m.
Show that m 6 n, and that this inequality is best possible for every n.

(ii) Let A1, . . . , Am be even subsets of [n], with |Ai ∩Aj | odd for all 1 6 i < j 6 m.
Show that

m 6
{
n− 1 if n is even,

n if n is odd,

and that these inequalities are best possible for every n.

(iii) Let p(k) be the partition function, the number of partitions of k > 1 into
positive integers. Thus p(1) = 1, p(2) = 2, and 5 = 1+ · · ·+1 = 1+1+1+2 = 1+1+3 =
1 + 2 + 2 = 1 + 4 = 2 + 3 = 5 shows that p(5) = 7. Show that for n = 2k there are at
least p(k) non-isomorphic families {A1, . . . , An} of odd subsets of [n] such that |Ai ∩ Aj |
is even for all 1 6 i < j 6 n.

2

(i) Prove the Harris-Kleitman inequality from first principles. [If you quote any
related result, such as the Four Functions Theorem, then you must prove that result.]

(ii) Let A,B ⊂ P(n) be such that if A ∈ A and B ∈ B then A 6⊂ B and B 6⊂ A.
Show that

|A|1/2 + |B|1/2 6 2n/2.

[Hint. Let U1 ⊂ P(n) be the up-set generated by A, i.e. the collection of sets in P(n)
containing at least one member of A, and let U2 = P(n)\U1. Define V1 and V2 analogously
for B instead of A. Check that A ⊂ U1 ∩ V2 and B ⊂ U2 ∩ V1.]
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Let An = {A1, . . . , An} ⊂ P(m) be a non-trivial exactly 1-intersecting family of
sets, i.e. let An be such that |Ai ∩Aj | = 1 for all 1 6 i < j 6 n and ∩ni=1Ai = ∅.

(i) Show that the number of pairs of points covered by the Ai is at least
(
n
2

)
, i.e.

with ai = |Ai| we have
n∑

i=1

(
ai
2

)
>
(
n

2

)
,

and so m > n.

(ii) For what values of n is there a non-trivial exactly 1-intersecting family An ⊂
P(n)?

(iii) Are there infinitely many values of n for which there are at least two non-
isomorphic non-trivial exactly 1-intersecting families An ⊂ P(n)?
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(i) Let A ⊂ P(X) be an antichain, where, as usual, |X| = n. For 0 6 h 6 n, write
Ah = A ∩X(h) for the part of A at height h. Prove that

n∑

h=0

|Ah|
(
n

h

)−1
6 1, (1)

with equality if and only if A = Ah = X(h) for some h. Deduce that |A| 6
(

n
bn/2c

)
, with

equality if and only if A = X(bn/2c) or A = X(dn/2e).

(ii) Let r > 2, and let F ⊂ X(2r) be such that if A,B,C are three sets in F then
A ∩B 6⊂ C. Show that |F| 6

(
2r
r

)
+ 1.
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