MATHEMATICAL TRIPOS Part III

Friday, 2 June, 2023 1:30 pm to 3:30 pm

PAPER 109

COMBINATORICS

Before you begin please read these instructions carefully

Candidates have THREE HOURS to complete the written examination.
Attempt no more than THREE questions.
There are FOUR questions in total.
The questions carry equal weight.

STATIONERY REQUIREMENTS	SPECIAL REQUIREMENTS
Cover sheet	None
Treasury tag	
Script paper	
Rough paper	

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1

(i) Let A_{1}, \ldots, A_{m} be odd subsets of $[n]$, with $\left|A_{i} \cap A_{j}\right|$ even for all $1 \leqslant i<j \leqslant m$. Show that $m \leqslant n$, and that this inequality is best possible for every n.
(ii) Let A_{1}, \ldots, A_{m} be even subsets of $[n]$, with $\left|A_{i} \cap A_{j}\right|$ odd for all $1 \leqslant i<j \leqslant m$. Show that

$$
m \leqslant \begin{cases}n-1 & \text { if } n \text { is even } \\ n & \text { if } n \text { is odd }\end{cases}
$$

and that these inequalities are best possible for every n.
(iii) Let $p(k)$ be the partition function, the number of partitions of $k \geqslant 1$ into positive integers. Thus $p(1)=1, p(2)=2$, and $5=1+\cdots+1=1+1+1+2=1+1+3=$ $1+2+2=1+4=2+3=5$ shows that $p(5)=7$. Show that for $n=2 k$ there are at least $p(k)$ non-isomorphic families $\left\{A_{1}, \ldots, A_{n}\right\}$ of odd subsets of $[n]$ such that $\left|A_{i} \cap A_{j}\right|$ is even for all $1 \leqslant i<j \leqslant n$.

2

(i) Prove the Harris-Kleitman inequality from first principles. [If you quote any related result, such as the Four Functions Theorem, then you must prove that result.]
(ii) Let $\mathcal{A}, \mathcal{B} \subset \mathcal{P}(n)$ be such that if $A \in \mathcal{A}$ and $B \in \mathcal{B}$ then $A \not \subset B$ and $B \not \subset A$. Show that

$$
|\mathcal{A}|^{1 / 2}+|\mathcal{B}|^{1 / 2} \leqslant 2^{n / 2}
$$

[Hint. Let $\mathcal{U}_{1} \subset \mathcal{P}(n)$ be the up-set generated by \mathcal{A}, i.e. the collection of sets in $\mathcal{P}(n)$ containing at least one member of \mathcal{A}, and let $\mathcal{U}_{2}=\mathcal{P}(n) \backslash \mathcal{U}_{1}$. Define \mathcal{V}_{1} and \mathcal{V}_{2} analogously for \mathcal{B} instead of \mathcal{A}. Check that $\mathcal{A} \subset \mathcal{U}_{1} \cap \mathcal{V}_{2}$ and $\mathcal{B} \subset \mathcal{U}_{2} \cap \mathcal{V}_{1}$.]

3

Let $\mathcal{A}_{n}=\left\{A_{1}, \ldots, A_{n}\right\} \subset \mathcal{P}(m)$ be a non-trivial exactly 1-intersecting family of sets, i.e. let \mathcal{A}_{n} be such that $\left|A_{i} \cap A_{j}\right|=1$ for all $1 \leqslant i<j \leqslant n$ and $\cap_{i=1}^{n} A_{i}=\emptyset$.
(i) Show that the number of pairs of points covered by the A_{i} is at least $\binom{n}{2}$, i.e. with $a_{i}=\left|A_{i}\right|$ we have

$$
\sum_{i=1}^{n}\binom{a_{i}}{2} \geqslant\binom{ n}{2}
$$

and so $m \geqslant n$.
(ii) For what values of n is there a non-trivial exactly 1-intersecting family $\mathcal{A}_{n} \subset$ $\mathcal{P}(n)$?
(iii) Are there infinitely many values of n for which there are at least two nonisomorphic non-trivial exactly 1-intersecting families $\mathcal{A}_{n} \subset \mathcal{P}(n)$?

4

(i) Let $\mathcal{A} \subset \mathcal{P}(X)$ be an antichain, where, as usual, $|X|=n$. For $0 \leqslant h \leqslant n$, write $\mathcal{A}_{h}=\mathcal{A} \cap X^{(h)}$ for the part of \mathcal{A} at height h. Prove that

$$
\begin{equation*}
\sum_{h=0}^{n}\left|\mathcal{A}_{h}\right|\binom{n}{h}^{-1} \leqslant 1 \tag{1}
\end{equation*}
$$

with equality if and only if $\mathcal{A}=\mathcal{A}_{h}=X^{(h)}$ for some h. Deduce that $|\mathcal{A}| \leqslant\binom{ n}{\lfloor n / 2\rfloor}$, with equality if and only if $\mathcal{A}=X^{(\lfloor n / 2\rfloor)}$ or $\mathcal{A}=X^{(\lceil n / 2\rceil)}$.
(ii) Let $r \geqslant 2$, and let $\mathcal{F} \subset X^{(2 r)}$ be such that if A, B, C are three sets in \mathcal{F} then $A \cap B \not \subset C$. Show that $|\mathcal{F}| \leqslant\binom{ 2 r}{r}+1$.

END OF PAPER

