MAMA/109, NST3AS/109, MAAS/109

MAT3 MATHEMATICAL TRIPOS Part III

Friday, 2 June, 2023 $-1:30~\mathrm{pm}$ to $3:30~\mathrm{pm}$

PAPER 109

COMBINATORICS

Before you begin please read these instructions carefully

Candidates have THREE HOURS to complete the written examination.

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

SPECIAL REQUIREMENTS None

Cover sheet Treasury tag Script paper Rough paper

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1

(i) Let A_1, \ldots, A_m be odd subsets of [n], with $|A_i \cap A_j|$ even for all $1 \leq i < j \leq m$. Show that $m \leq n$, and that this inequality is best possible for every n.

(ii) Let A_1, \ldots, A_m be even subsets of [n], with $|A_i \cap A_j|$ odd for all $1 \le i < j \le m$. Show that

$$m \leqslant \begin{cases} n-1 & \text{if } n \text{ is even} \\ n & \text{if } n \text{ is odd,} \end{cases}$$

and that these inequalities are best possible for every n.

(iii) Let p(k) be the partition function, the number of partitions of $k \ge 1$ into positive integers. Thus p(1) = 1, p(2) = 2, and $5 = 1 + \dots + 1 = 1 + 1 + 1 + 2 = 1 + 1 + 3 = 1 + 2 + 2 = 1 + 4 = 2 + 3 = 5$ shows that p(5) = 7. Show that for n = 2k there are at least p(k) non-isomorphic families $\{A_1, \dots, A_n\}$ of odd subsets of [n] such that $|A_i \cap A_j|$ is even for all $1 \le i < j \le n$.

$\mathbf{2}$

(i) Prove the Harris-Kleitman inequality from first principles. [If you quote any related result, such as the Four Functions Theorem, then you must prove that result.]

(ii) Let $\mathcal{A}, \mathcal{B} \subset \mathcal{P}(n)$ be such that if $A \in \mathcal{A}$ and $B \in \mathcal{B}$ then $A \not\subset B$ and $B \not\subset A$. Show that

$$|\mathcal{A}|^{1/2} + |\mathcal{B}|^{1/2} \leq 2^{n/2}.$$

[Hint. Let $\mathcal{U}_1 \subset \mathcal{P}(n)$ be the up-set generated by \mathcal{A} , i.e. the collection of sets in $\mathcal{P}(n)$ containing at least one member of \mathcal{A} , and let $\mathcal{U}_2 = \mathcal{P}(n) \setminus \mathcal{U}_1$. Define \mathcal{V}_1 and \mathcal{V}_2 analogously for \mathcal{B} instead of \mathcal{A} . Check that $\mathcal{A} \subset \mathcal{U}_1 \cap \mathcal{V}_2$ and $\mathcal{B} \subset \mathcal{U}_2 \cap \mathcal{V}_1$.]

3

Let $\mathcal{A}_n = \{A_1, \ldots, A_n\} \subset \mathcal{P}(m)$ be a non-trivial exactly 1-intersecting family of sets, i.e. let \mathcal{A}_n be such that $|A_i \cap A_j| = 1$ for all $1 \leq i < j \leq n$ and $\bigcap_{i=1}^n A_i = \emptyset$.

(i) Show that the number of pairs of points covered by the A_i is at least $\binom{n}{2}$, i.e. with $a_i = |A_i|$ we have

$$\sum_{i=1}^{n} \binom{a_i}{2} \ge \binom{n}{2},$$

and so $m \ge n$.

(ii) For what values of n is there a non-trivial exactly 1-intersecting family $\mathcal{A}_n \subset \mathcal{P}(n)$?

(iii) Are there infinitely many values of n for which there are at least two nonisomorphic non-trivial exactly 1-intersecting families $\mathcal{A}_n \subset \mathcal{P}(n)$?

UNIVERSITY OF

 $\mathbf{4}$

(i) Let $\mathcal{A} \subset \mathcal{P}(X)$ be an antichain, where, as usual, |X| = n. For $0 \leq h \leq n$, write $\mathcal{A}_h = \mathcal{A} \cap X^{(h)}$ for the part of \mathcal{A} at height h. Prove that

$$\sum_{h=0}^{n} |\mathcal{A}_{h}| {\binom{n}{h}}^{-1} \leqslant 1, \tag{1}$$

with equality if and only if $\mathcal{A} = \mathcal{A}_h = X^{(h)}$ for some h. Deduce that $|\mathcal{A}| \leq \binom{n}{\lfloor n/2 \rfloor}$, with equality if and only if $\mathcal{A} = X^{(\lfloor n/2 \rfloor)}$ or $\mathcal{A} = X^{(\lceil n/2 \rceil)}$.

(ii) Let $r \ge 2$, and let $\mathcal{F} \subset X^{(2r)}$ be such that if A, B, C are three sets in \mathcal{F} then $A \cap B \notin C$. Show that $|\mathcal{F}| \le {\binom{2r}{r}} + 1$.

END OF PAPER