MAMA/107, NST3AS/107, MAAS/107

MAT3 MATHEMATICAL TRIPOS Part III

Tuesday, 6 June, 2023 $\quad 1{:}30~\mathrm{pm}$ to $4{:}30~\mathrm{pm}$

PAPER 107

ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

Before you begin please read these instructions carefully

Candidates have THREE HOURS to complete the written examination.

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

SPECIAL REQUIREMENTS None

Cover sheet Treasury tag Script paper Rough paper

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF CAMBRIDGE

1 Let Ω be a domain (i.e. open and connected) in \mathbb{R}^n and consider the equation

$$\Delta u = 0 \tag{1}$$

in Ω .

- (a) Suppose that $u \in C^2(\Omega)$.
 - (i) State and prove the Mean Value Property for u.
 - (ii) Suppose $x \in \Omega$ and suppose for the moment that u is also $C^{\infty}(\Omega)$. Show that

$$|\nabla u(x)| \leqslant C \sup_{\Omega} |u|$$

for some constant C > 0 independent of u.

- (iii) By mollifying u, hence deduce that $u \in C^{\infty}(\Omega)$.
- (b) Suppose next that $u \in H^1(\Omega)$, i.e. u is a weak solution of (1). Suppose $0 < \rho' < \rho$, $x \in \Omega$ and $B_{\rho}(x) \subset \Omega$.
 - (i) By constructing a suitable test function, prove that weak solutions of (1) satisfy

$$\int_{B_{\rho'}(x)} |\nabla u|^2 \leqslant \frac{1}{|\rho' - \rho|^2} \int_{B_{\rho}(x)} |u|^2.$$
(2)

- (ii) Hence deduce that weak solutions of (1) are smooth.
- (c) Now suppose that u is merely $L^2_{loc}(\Omega)$. Formulate what it means for u to satisfy (1). If u satisfies (1) according to your formulation, does u still agree with a smooth function almost everywhere in Ω ? Briefly justify your answer.

[You may use without proof the fact that on open, bounded domains $\Omega' \subset \mathbb{R}^n$ with sufficiently smooth boundary, $W^{k,q}(\Omega') \subset C^{r,\alpha}(\Omega')$ for $r + \alpha - k \ge n/q$. You may also use without proof standard facts about mollifiers provided they are stated clearly.]

2 Let $\Omega \subset \mathbb{R}^n$ be open and consider the uniformly elliptic differential operator

$$L = a^{ij}\partial_i\partial_j + b^i\partial_i + c,$$

where a^{ij} , b^i , $c \in C^{0,\alpha}(\overline{\Omega})$. Write down what it means for L to be uniformly elliptic.

(a) Consider the case $\Omega = \mathbb{R}^{n-1}_x \times (-1,1)_y$, and $b: \Omega \to \mathbb{R}^n$ given by

$$b(x,y) = (x,y).$$

Suppose that $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$ satisfies

$$Lu \ge 0$$

in Ω . Carefully prove the Weak Maximum Principle for u, stating clearly any conditions on c.

- (b) Next, consider the case $\Omega = \mathbb{R}^n_+ = \{x \in \mathbb{R}^n : x_n > 0\}$, $a^{ij} = \delta^{ij}$, $b^i = 0$ and c = 0, so that $L = \Delta$. Suppose $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$ satisfies $Lu \ge 0$ in Ω . Does u obey the Weak Maximum Principle in this case? Justify your answer with a proof or a counterexample.
- (c) Consider now the case $\Omega = \mathbb{R}^n \setminus \overline{B_1(0)}$, $n \ge 3$, where $B_1(0)$ is the open unit ball centred at the origin. Let $L = \Delta$. Construct a counterexample to the Weak Maximum Principle in this case. What about the case n = 2?
- (d) A differential operator $L = \sum_{|\alpha| \leqslant m} a_{\alpha}(x) \partial^{\alpha}$ of order m is called elliptic on Ω if

$$\sum_{|\alpha|=m} a_{\alpha}(x)\xi^{\alpha} \neq 0$$

for all $x \in \Omega$ and all $\xi \in \mathbb{R}^n$ with $\xi \neq 0$. Construct an elliptic fourth order differential operator in one dimension on $\Omega = (0, \pi)$ satisfying $a_4(x)a_0(x) < 0$ which does not satisfy the Weak Maximum Principle.

[Hint: for part (c), it may help to consider functions of the form $|x|^a$ in the case $n \ge 3$.]

UNIVERSITY OF CAMBRIDGE

3 Throughout this question, $n \ge 2$ and $B_{\rho}(0)$ denotes the open ball in \mathbb{R}^n with radius ρ and centre the origin.

- (a) Let $a^{ij} \in L^{\infty}(B_1(0))$ for $1 \leq i, j \leq n$, and suppose that there are constants $\lambda, \Lambda > 0$ such that $a^{ij}(x)\zeta^i\zeta^j \geq \lambda|\zeta|^2$ for a.e. $x \in B_1(0)$ and all $\zeta \in \mathbb{R}^n$, and $\sum_{i,j=1}^n \|a^{ij}\|_{L^{\infty}(B_1(0))} \leq \Lambda^2$. Define a differential operator L by $Lu = D_i(a^{ij}D_ju)$.
 - (i) Show that there is a constant $C = C(\lambda, \Lambda) > 0$ such that if $u \in W^{1,2}(B_1(0))$ is a non-negative weak subsolution to Lu = 0 in $B_1(0)$, then for each constant $\alpha > 1$ and each $\eta \in C_c^1(B_1(0))$,

$$\int_{B_1(0)} |Du|^2 u^{\alpha-2} \eta^2 \leq \frac{C}{(\alpha-1)^2} \int_{B_1(0)} u^{\alpha} |D\eta|^2.$$

Deduce that for each p > 1, such u satisfies

$$\sup_{B_{1/2}(0)} u \leqslant C \|u\|_{L^p(B_1(0))}$$

where $C = C(n, \lambda, \Lambda, p) \in (0, \infty)$.

[You may assume without proof the following facts:

- if $u \in W^{1,2}(B_1(0))$ and $u \ge \epsilon$ for some $\epsilon > 0$, then for any fixed $\beta > 0$ and any $k \ge 1$, the function $v_k = \min\{u^{\beta}, ku\}$ belongs to $W^{1,2}(B_1(0))$, and its weak derivative is given by $Dv_k = \beta u^{\beta-1}Du$ a.e. on $\Omega_k \equiv \{x \in B_1(0) : u^{\beta} \le ku\}$ and $Dv_k = kDu$ a.e. on $B_1(0) \setminus \Omega_k$;
- the Sobolev embedding theorem, which says that if $w \in W_0^{1,2}(B_1(0))$ then $w \in L^{2\sigma}(B_1(0))$ and satisfies $||u||_{L^{2\sigma}(B_1(0))} \leq \overline{C}||Du||_{L^2(B_1(0))}$, where $\overline{C} = \overline{C}(n) \in (0, \infty)$, and $\sigma = \frac{n}{n-2}$ if $n \geq 3$ and σ is any fixed number > 1, e.g. $\sigma = 2$, if n = 2.]
- (ii) Carefully stating (without proof), and using in conjunction with (i), any other relevant result proved in the course, deduce that there is a constant $C = C(n, \lambda, \Lambda) \in (0, \infty)$ such that if $u \in W^{1,2}(B_1(0))$ is a non-negative weak solution to Lu = 0 in $B_1(0)$ then

$$\sup_{B_{1/4}(0)} u \leqslant C \inf_{B_{1/4}(0)} u.$$

[QUESTION CONTINUES ON THE NEXT PAGE]

- (b) Let $v : \mathbb{R}^n \to \mathbb{R}$ $(n \ge 2)$ be a C^2 function. Suppose that for every ball $B_R(0) \subset \mathbb{R}^n$, v is a minimiser of the area functional $\mathcal{A}(v) = \int_{B_R(0)} \sqrt{1 + |Dv|^2}$ in the sense that $\mathcal{A}(v) \le \mathcal{A}(\widetilde{v})$ for every $\widetilde{v} \in C^2(B_R(0))$ with $\widetilde{v} = v$ on $\partial B_R(0)$.
 - (i) Show that v satisfies the equation $D_i\left(\frac{D_iv}{\sqrt{1+|Dv|^2}}\right) = 0$ in \mathbb{R}^n . Show moreover that for every R > 0, the function $v_R(x) = R^{-1}v(Rx)$ also satisfies the same equation in $B_1(0)$.
 - (ii) Show that for each $k \in \{1, 2, ..., n\}$ and each R > 0, the partial derivative $w = D_k v_R$ satisfies an equation of the form $D_i(a^{ij}(Dv(Rx))D_jw) = 0$ weakly in $B_1(0)$, giving an explicit expression for $a^{ij}(p), p \in \mathbb{R}^n$.
 - (iii) Now suppose that $M \equiv \sup_{\mathbb{R}^n} |Dv| < \infty$. By using the results of (b)(ii) and (a)(ii) above, show in this case that v must be an affine function, i.e. $v(x) = a \cdot x + b$ for some constants $a \in \mathbb{R}^n$, $b \in \mathbb{R}$ and all $x \in \mathbb{R}^n$.

 $\mathbf{4}$

- (a) For a ball $B \subset \mathbb{R}^n$ and a continuous function $\varphi : \overline{B} \to \mathbb{R}$, consider the Dirichlet problem $\Delta v = 0$ in B, $v = \varphi$ on ∂B . Given that a solution $v \in C^{\infty}(\overline{B})$ to this problem exists whenever $\varphi \in C^{\infty}(\overline{B})$, deduce that for any $\varphi \in C^0(\overline{B})$ there is a unique solution $v \in C^{\infty}(B) \cap C^0(\overline{B})$. [You may use without proof standard regularity results for harmonic functions established in the course.]
- (b) Let $\Omega \subset \mathbb{R}^n$ $(n \ge 2)$ be a bounded domain. We say that a function $u \in C^0(\Omega)$ is sub (super) harmonic in Ω if for every ball B with $\overline{B} \subset \Omega$, we have that $u \le u_B$ $(u \ge u_B)$ in \overline{B} , where u_B denotes the unique solution in $C^{\infty}(B) \cap C^0(\overline{B})$ to the Dirichlet problem in (a) above taken with $\varphi = u$.
 - (i) If $u_1, u_2 \in C^0(\Omega)$ are sub-harmonic in Ω , show that $u = \max\{u_1, u_2\}$ is subharmonic in Ω .
 - (ii) If $u_1, u_2 \in C^0(\overline{\Omega})$, u_1 is sub harmonic in Ω , u_2 is super harmonic in Ω and if $u_1 \leq u_2$ on $\partial \Omega$, show that $u_1 \leq u_2$ in $\overline{\Omega}$. [Hint: if not, let $M \equiv \sup_{\overline{\Omega}} (u_1 u_2)$, note that M > 0 and first show that the set $\Omega_1 = \{y \in \Omega : (u_1 u_2)(y) = M\}$ is open].

Now suppose $\varphi \in C^0(\overline{\Omega})$ and let $S_{\varphi} = \{ u \in C^0(\overline{\Omega}) : u \text{ is sub harmonic in } \Omega \text{ and } u \leq \varphi \text{ on } \partial \Omega \}$. Define $\overline{u} : \Omega \to \mathbb{R}$ by

$$\overline{u}(x) = \sup_{u \in \mathcal{S}_{\varphi}} u(x) \quad \forall x \in \Omega.$$

- (iii) Show that $S_{\varphi} \neq \emptyset$ and that \overline{u} is well-defined.
- (iv) Show that $\overline{u} \in C^{\infty}(\Omega)$ and that $\Delta \overline{u} = 0$ in Ω . [You may use without proof the following fact: given a subharmonic function $u \in C^0(\Omega)$ and a ball B with $\overline{B} \subset \Omega$, the harmonic lift U_B of u with respect to B, defined by $U_B(x) = u_B(x)$ if $x \in B$ and $U_B(x) = u(x)$ if $x \in \Omega \setminus B$, is again subharmonic in Ω .]
- (v) Let $z \in \partial \Omega$ and suppose that there is a function $w \in C^0(\overline{\Omega})$ such that w is super harmonic in Ω , w > 0 in $\overline{\Omega} \setminus \{z\}$ and w(z) = 0. Show that $\overline{u}(x) \to \varphi(z)$ as $x \to z$.
- (vi) Let C denote the cube $[-1,1]^n \equiv \{(x_1,x_2,\ldots,x_n) \in \mathbb{R}^n : -1 \leq x_j \leq 1 \ \forall j\}$, and let $D = C \setminus B_{1/4}(p)$ where $p \in B_{1/2}(0)$. Deduce that for any given $\varphi \in C^0(\partial D)$, there is a unique function $u \in C^\infty(D) \cap C^0(\overline{D})$ such that $\Delta u = 0$ in D and $u = \varphi$ on ∂D .

END OF PAPER