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1 Let Ω be a domain (i.e. open and connected) in Rn and consider the equation

∆u = 0 (1)

in Ω.

(a) Suppose that u ∈ C2(Ω).

(i) State and prove the Mean Value Property for u.

(ii) Suppose x ∈ Ω and suppose for the moment that u is also C∞(Ω). Show that

|∇u(x)| 6 C sup
Ω
|u|

for some constant C > 0 independent of u.

(iii) By mollifying u, hence deduce that u ∈ C∞(Ω).

(b) Suppose next that u ∈ H1(Ω), i.e. u is a weak solution of (1). Suppose 0 < ρ′ < ρ,
x ∈ Ω and Bρ(x) ⊂ Ω.

(i) By constructing a suitable test function, prove that weak solutions of (1)
satisfy ∫

Bρ′ (x)
|∇u|2 6 1

|ρ′ − ρ|2
∫

Bρ(x)
|u|2. (2)

(ii) Hence deduce that weak solutions of (1) are smooth.

(c) Now suppose that u is merely L2
loc(Ω). Formulate what it means for u to satisfy

(1). If u satisfies (1) according to your formulation, does u still agree with a smooth
function almost everywhere in Ω? Briefly justify your answer.

[You may use without proof the fact that on open, bounded domains Ω′ ⊂ Rn with
sufficiently smooth boundary, W k,q(Ω′) ⊂ Cr,α(Ω′) for r+α− k > n/q. You may also use
without proof standard facts about mollifiers provided they are stated clearly.]
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2 Let Ω ⊂ Rn be open and consider the uniformly elliptic differential operator

L = aij∂i∂j + bi∂i + c,

where aij , bi, c ∈ C0,α(Ω). Write down what it means for L to be uniformly elliptic.

(a) Consider the case Ω = Rn−1x × (−1, 1)y, and b : Ω→ Rn given by

b(x, y) = (x, y).

Suppose that u ∈ C2(Ω) ∩ C0(Ω) satisfies

Lu > 0

in Ω. Carefully prove the Weak Maximum Principle for u, stating clearly any conditions
on c.

(b) Next, consider the case Ω = Rn+ = {x ∈ Rn : xn > 0}, aij = δij , bi = 0 and c = 0, so
that L = ∆. Suppose u ∈ C2(Ω)∩C0(Ω) satisfies Lu > 0 in Ω. Does u obey the Weak
Maximum Principle in this case? Justify your answer with a proof or a counterexample.

(c) Consider now the case Ω = Rn \B1(0), n > 3, where B1(0) is the open unit ball centred
at the origin. Let L = ∆. Construct a counterexample to the Weak Maximum Principle
in this case. What about the case n = 2?

(d) A differential operator L =
∑
|α|6m aα(x)∂α of order m is called elliptic on Ω if

∑

|α|=m
aα(x)ξα 6= 0

for all x ∈ Ω and all ξ ∈ Rn with ξ 6= 0. Construct an elliptic fourth order differential
operator in one dimension on Ω = (0, π) satisfying a4(x)a0(x) < 0 which does not
satisfy the Weak Maximum Principle.

[Hint: for part (c), it may help to consider functions of the form |x|a in the case n > 3.]

Part III, Paper 107 [TURN OVER]



4

3 Throughout this question, n > 2 and Bρ(0) denotes the open ball in Rn with radius
ρ and centre the origin.

(a) Let aij ∈ L∞(B1(0)) for 1 6 i, j 6 n, and suppose that there are constants
λ,Λ > 0 such that aij(x)ζiζj > λ|ζ|2 for a.e. x ∈ B1(0) and all ζ ∈ Rn, and∑n

i,j=1 ‖aij‖L∞(B1(0)) 6 Λ2. Define a differential operator L by Lu = Di

(
aijDju

)
.

(i) Show that there is a constant C = C(λ,Λ) > 0 such that if u ∈ W 1,2(B1(0))
is a non-negative weak subsolution to Lu = 0 in B1(0), then for each constant
α > 1 and each η ∈ C1

c (B1(0)),

∫

B1(0)
|Du|2uα−2η2 6 C

(α− 1)2

∫

B1(0)
uα|Dη|2.

Deduce that for each p > 1, such u satisfies

sup
B1/2(0)

u 6 C‖u‖Lp(B1(0))

where C = C(n, λ,Λ, p) ∈ (0,∞).

[You may assume without proof the following facts:

• if u ∈ W 1,2(B1(0)) and u > ε for some ε > 0, then for any fixed
β > 0 and any k > 1, the function vk = min{uβ, ku} belongs to
W 1,2(B1(0)), and its weak derivative is given by Dvk = βuβ−1Du a.e.
on Ωk ≡ {x ∈ B1(0) : uβ 6 ku} and Dvk = kDu a.e. on B1(0) \ Ωk;

• the Sobolev embedding theorem, which says that if w ∈ W 1,2
0 (B1(0))

then w ∈ L2σ(B1(0)) and satisfies ‖u‖L2σ(B1(0)) 6 C‖Du‖L2(B1(0)), where

C = C(n) ∈ (0,∞), and σ = n
n−2 if n > 3 and σ is any fixed number > 1,

e.g. σ = 2, if n = 2.]

(ii) Carefully stating (without proof), and using in conjunction with (i), any
other relevant result proved in the course, deduce that there is a constant
C = C(n, λ,Λ) ∈ (0,∞) such that if u ∈W 1,2(B1(0)) is a non-negative weak
solution to Lu = 0 in B1(0) then

sup
B1/4(0)

u 6 C inf
B1/4(0)

u.

[QUESTION CONTINUES ON THE NEXT PAGE]
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(b) Let v : Rn → R (n > 2) be a C2 function. Suppose that for every ball BR(0) ⊂ Rn,
v is a minimiser of the area functional A(v) =

∫
BR(0)

√
1 + |Dv|2 in the sense that

A(v) 6 A(ṽ) for every ṽ ∈ C2(BR(0)) with ṽ = v on ∂BR(0).

(i) Show that v satisfies the equation Di

(
Div√
1+|Dv|2

)
= 0 in Rn. Show moreover

that for every R > 0, the function vR(x) = R−1v(Rx) also satisfies the same
equation in B1(0).

(ii) Show that for each k ∈ {1, 2, . . . , n} and each R > 0, the partial derivative
w = DkvR satisfies an equation of the form Di

(
aij(Dv(Rx))Djw

)
= 0 weakly

in B1(0), giving an explicit expression for aij(p), p ∈ Rn.

(iii) Now suppose that M ≡ supRn |Dv| < ∞. By using the results of (b)(ii)
and (a)(ii) above, show in this case that v must be an affine function, i.e.
v(x) = a · x + b for some constants a ∈ Rn, b ∈ R and all x ∈ Rn.
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(a) For a ball B ⊂ Rn and a continuous function ϕ : B → R, consider the Dirichlet
problem ∆ v = 0 in B, v = ϕ on ∂B. Given that a solution v ∈ C∞(B) to
this problem exists whenever ϕ ∈ C∞(B), deduce that for any ϕ ∈ C0(B) there
is a unique solution v ∈ C∞(B) ∩ C0(B). [You may use without proof standard
regularity results for harmonic functions established in the course.]

(b) Let Ω ⊂ Rn (n > 2) be a bounded domain. We say that a function u ∈ C0(Ω) is
sub (super) harmonic in Ω if for every ball B with B ⊂ Ω, we have that u 6 uB
(u > uB) in B, where uB denotes the unique solution in C∞(B) ∩ C0(B) to the
Dirichlet problem in (a) above taken with ϕ = u.

(i) If u1, u2 ∈ C0(Ω) are sub harmonic in Ω, show that u = max {u1, u2} is
subharmonic in Ω.

(ii) If u1, u2 ∈ C0(Ω), u1 is sub harmonic in Ω, u2 is super harmonic in Ω and if
u1 6 u2 on ∂ Ω, show that u1 6 u2 in Ω. [Hint: if not, let M ≡ supΩ (u1−u2),
note that M > 0 and first show that the set Ω1 = {y ∈ Ω : (u1−u2)(y) = M}
is open].

Now suppose ϕ ∈ C0(Ω) and let Sϕ = {u ∈ C0(Ω) : u is sub harmonic in Ω and u 6
ϕ on ∂ Ω}. Define u : Ω→ R by

u(x) = sup
u∈Sϕ

u(x) ∀x ∈ Ω.

(iii) Show that Sϕ 6= ∅ and that u is well-defined.

(iv) Show that u ∈ C∞(Ω) and that ∆u = 0 in Ω. [You may use without proof
the following fact: given a subharmonic function u ∈ C0(Ω) and a ball B with
B ⊂ Ω, the harmonic lift UB of u with respect to B, defined by UB(x) = uB(x)
if x ∈ B and UB(x) = u(x) if x ∈ Ω \B, is again subharmonic in Ω.]

(v) Let z ∈ ∂ Ω and suppose that there is a function w ∈ C0(Ω) such that w is
super harmonic in Ω, w > 0 in Ω \ {z} and w(z) = 0. Show that u(x)→ ϕ(z)
as x→ z.

(vi) Let C denote the cube [−1, 1]n ≡ {(x1, x2, . . . , xn) ∈ Rn : −1 6 xj 6 1 ∀j},
and let D = C \ B1/4(p) where p ∈ B1/2(0). Deduce that for any given

ϕ ∈ C0(∂D), there is a unique function u ∈ C∞(D) ∩ C0(D) such that
∆u = 0 in D and u = ϕ on ∂D.

END OF PAPER
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