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1 (a) State the Cauchy–Kovalevskaya Theorem, restricted to quasilinear second order
scalar equations on Rn. Give in particular the definition of what it means for a hypersurface
Γ to be non-characteristic at x0 with respect to initial data (u0, u1).

(b) Indicate which of these hypersurfaces in Rn+1 (with coordinates t, x1,. . . , xn)
are non-characteristic, briefly justifying your answer. Remember that the answer may
depend on the point and the data.

(i) the hypersurface t = 0 for the equation �u := −∂2
t + ∆u = 0

(ii) the hypersurface t = 0 for the equation ∂2
t u+ ∆u = 0

(iii) the hypersurface t = 0 for the equation ∂tu = ∆u

(iv) the hypersurface t = 0 for the equation ∂2
t u = (1 + u2)∆u

(v) the hypersurface x2
1 + · · ·+ x2

n = 1 for the equation �u = 0

(vi) the hypersurface t = x1 for the equation �u = 0

(vii) the hypersurface t = x1 for the equation ∂tu = ∆u.

(c) Show that that there exists a unique local analytic solution in a neighbourhood
of the origin (0, 0) to the following characteristic initial value problem in R1+1 with
coordinates (t, x):

�u = u, u|Γ = u0 (1)

where Γ = {t− x = 0, 0 6 t+ x 6 1} ∪ {t+ x = 0, 0 6 t− x 6 1}, and u0 is the restriction
to Γ of an analytic function defined on some open neighbourhood of Γ.

[Hint: Rewrite the equation in terms of η = t+x and ξ = t−x. Compute the power
series at (0, 0) from the equation and the data and estimate the growth of the terms to
show the existence of a solution.]

(d) Show moreover that an analytic solution in fact exists in the characteristic
square:

{0 6 t− x 6 1} ∩ {0 6 t+ x 6 1}. (2)

[Hint: Look at (ξ0, η0) with ξ0 6 1, η0 6 1 such that there exists an analytic solution
on {0 6 ξ 6 ξ0} ∩ {0 6 η 6 η0} \ {(ξ0, η0)} and estimate the solution appropriately in
this region by integrating along characteristics. Show from this that the solution extends
analytically to (ξ0, η0) and infer the result.]

(e) Show that there exists a C2 solution u to the initial value problem (1) in the
region (2), where u0 is now only assumed to be the restriction to Γ of a C2 function defined
on some neighbourhood of Γ. [Hint: Approximate by analytic u0 and use the estimates
proven in (d).]
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2 Consider a domain Ω ⊂ Rn with compact closure and smooth boundary ∂Ω.

(a) Define the space H1
0 (Ω) together with its inner product, showing that the inner

product is positive definite. [You may use without proof the Poincaré inequality.]

Given f ∈ L2(Ω), state what it means for a u ∈ H1
0 (Ω) to be a weak solution of the

problem
∆u = f, u|∂Ω = 0. (1)

(b) For f ∈ L2(Ω), show the existence of a unique weak solution u of (1). [You may
use without proof the Riesz representation theorem.]

(c) Consider now the Dirichlet problem:

∆u− u = f, u|∂Ω = 0. (2)

Formulate a notion of weak solution for (2) for f ∈ L2(Ω) and prove again the existence
of a unique weak solution. [Hint: Show that there is a positive definite inner product
intimately related to (2).]

(d) State (without proof) a combined boundary and interior regularity for (1), i.e. an
estimate for an appropriate high Sobolev norm of u in terms of an appropriate slightly
lower Sobolev norm of f . Use this to prove an analogous interior and boundary regularity
for (2).

(e) Consider the Dirichlet problem for the coupled nonlinear system

∆u = (∂2
x1
v)2 + εf, ∆v + v = (∂2

x2
u)2, u|∂Ω = 0 = v|∂Ω, (3)

where x1, x2, . . . , xn denote the coordinates of Rn. Using (c) and (d), show that given
f ∈ C∞(Ω), there exists an ε0 > 0 sufficiently small such that for all 0 6 ε < ε0, there
exists a smooth solution (u, v) ∈ C∞(Ω) × C∞(Ω) of the problem (3). [You may use
without proof the fact, shown on example sheets, that Hk(Ω) is an algebra for sufficiently
high k and that ‖gh‖Hk(Ω) 6 Ck(Ω)‖g‖Hk(Ω)‖h‖Hk(Ω).]
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3 Let u0, u1 be smooth functions on R3 of compact support.

(a) Show the existence of a C∞ smooth solution u : R3+1 → R to

�u = 0, u(0, x) = u0(x), ∂tu(0, x) = u1(x). (1)

Show that any other C2 function ũ : R3+1 → R satisfying (1) coincides with u. Is the
assumption of compact support on u0 and u1 necessary for these statements?

(b) Show that the solution u satisfies the strong version of Huygens’ principle, which
you should formulate.

(c) Let (r, θ, φ) denote standard spherical coordinates on R3. Define ξ = t − r and
η = t+ r, consider ru as a function of (ξ, η, θ, φ), and define

ψ+(ξ, θ, φ) = lim
η→∞

ru(ξ, η, θ, φ)

and
ψ−(η, θ, φ) = lim

ξ→−∞
ru(ξ, η, θ, φ).

Show that ψ± are well defined functions ψ± : R× S2 → R of compact support.

(d) Restrict now to the case where (u0, u1) are spherically symmetric and can thus
be considered as radial functions u0(r), u1(r) in the space

Z = {(u0(r), u1(r)) ∈ C∞c ([0,∞))× C∞c ([0,∞)) : ∂nu0(0) = 0 = ∂nu1(0), n odd}.

Show that for for (u0, u1) ∈ Z, the functions ψ± are smooth, spherically symmetric
and of compact support, and thus can be viewed as functions ψ±(r) ∈ C∞c (R), and
moreover, that the associations

(u0, u1) 7→ ψ+, (u0, u1) 7→ ψ− (2)

both define injective linear maps

F± : Z → C∞c (R).

Identify explicitly the images of these maps X± ⊂ C∞c (R) and compute moreover explicitly
the resulting “scattering” map S := F+ ◦ F−1−

S : X− → X+

taking ψ− 7→ ψ+.
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