PAPER 105

ANALYSIS OF PARTIAL DIFFERENTIAL EQUATIONS

Before you begin please read these instructions carefully

Candidates have THREE HOURS to complete the written examination.
Attempt ALL questions.
There are THREE questions in total.
The questions carry equal weight.

STATIONERY REQUIREMENTS	SPECIAL REQUIREMENTS
Cover sheet	None
Treasury tag	
Script paper	
Rough paper	

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 (a) State the Cauchy-Kovalevskaya Theorem, restricted to quasilinear second order scalar equations on \mathbb{R}^{n}. Give in particular the definition of what it means for a hypersurface Γ to be non-characteristic at x_{0} with respect to initial data $\left(u_{0}, u_{1}\right)$.
(b) Indicate which of these hypersurfaces in \mathbb{R}^{n+1} (with coordinates t, x_{1}, \ldots, x_{n}) are non-characteristic, briefly justifying your answer. Remember that the answer may depend on the point and the data.
(i) the hypersurface $t=0$ for the equation $\square u:=-\partial_{t}^{2}+\Delta u=0$
(ii) the hypersurface $t=0$ for the equation $\partial_{t}^{2} u+\Delta u=0$
(iii) the hypersurface $t=0$ for the equation $\partial_{t} u=\Delta u$
(iv) the hypersurface $t=0$ for the equation $\partial_{t}^{2} u=\left(1+u^{2}\right) \Delta u$
(v) the hypersurface $x_{1}^{2}+\cdots+x_{n}^{2}=1$ for the equation $\square u=0$
(vi) the hypersurface $t=x_{1}$ for the equation $\square u=0$
(vii) the hypersurface $t=x_{1}$ for the equation $\partial_{t} u=\Delta u$.
(c) Show that that there exists a unique local analytic solution in a neighbourhood of the origin $(0,0)$ to the following characteristic initial value problem in \mathbb{R}^{1+1} with coordinates (t, x) :

$$
\begin{equation*}
\square u=u,\left.\quad u\right|_{\Gamma}=u_{0} \tag{1}
\end{equation*}
$$

where $\Gamma=\{t-x=0,0 \leqslant t+x \leqslant 1\} \cup\{t+x=0,0 \leqslant t-x \leqslant 1\}$, and u_{0} is the restriction to Γ of an analytic function defined on some open neighbourhood of Γ.
[Hint: Rewrite the equation in terms of $\eta=t+x$ and $\xi=t-x$. Compute the power series at $(0,0)$ from the equation and the data and estimate the growth of the terms to show the existence of a solution.]
(d) Show moreover that an analytic solution in fact exists in the characteristic square:

$$
\begin{equation*}
\{0 \leqslant t-x \leqslant 1\} \cap\{0 \leqslant t+x \leqslant 1\} \tag{2}
\end{equation*}
$$

[Hint: Look at $\left(\xi_{0}, \eta_{0}\right)$ with $\xi_{0} \leqslant 1, \eta_{0} \leqslant 1$ such that there exists an analytic solution on $\left\{0 \leqslant \xi \leqslant \xi_{0}\right\} \cap\left\{0 \leqslant \eta \leqslant \eta_{0}\right\} \backslash\left\{\left(\xi_{0}, \eta_{0}\right)\right\}$ and estimate the solution appropriately in this region by integrating along characteristics. Show from this that the solution extends analytically to $\left(\xi_{0}, \eta_{0}\right)$ and infer the result.]
(e) Show that there exists a C^{2} solution u to the initial value problem (1) in the region (2), where u_{0} is now only assumed to be the restriction to Γ of a C^{2} function defined on some neighbourhood of Γ. [Hint: Approximate by analytic u_{0} and use the estimates proven in (d).]

2 Consider a domain $\Omega \subset \mathbb{R}^{n}$ with compact closure and smooth boundary $\partial \Omega$.
(a) Define the space $H_{0}^{1}(\Omega)$ together with its inner product, showing that the inner product is positive definite. [You may use without proof the Poincaré inequality.]

Given $f \in L^{2}(\Omega)$, state what it means for a $u \in H_{0}^{1}(\Omega)$ to be a weak solution of the problem

$$
\begin{equation*}
\Delta u=f,\left.\quad u\right|_{\partial \Omega}=0 . \tag{1}
\end{equation*}
$$

(b) For $f \in L^{2}(\Omega)$, show the existence of a unique weak solution u of (1). [You may use without proof the Riesz representation theorem.]
(c) Consider now the Dirichlet problem:

$$
\begin{equation*}
\Delta u-u=f,\left.\quad u\right|_{\partial \Omega}=0 \tag{2}
\end{equation*}
$$

Formulate a notion of weak solution for (2) for $f \in L^{2}(\Omega)$ and prove again the existence of a unique weak solution. [Hint: Show that there is a positive definite inner product intimately related to (2).]
(d) State (without proof) a combined boundary and interior regularity for (1), i.e. an estimate for an appropriate high Sobolev norm of u in terms of an appropriate slightly lower Sobolev norm of f. Use this to prove an analogous interior and boundary regularity for (2).
(e) Consider the Dirichlet problem for the coupled nonlinear system

$$
\begin{equation*}
\Delta u=\left(\partial_{x_{1}}^{2} v\right)^{2}+\varepsilon f, \quad \Delta v+v=\left(\partial_{x_{2}}^{2} u\right)^{2},\left.\quad u\right|_{\partial \Omega}=0=\left.v\right|_{\partial \Omega}, \tag{3}
\end{equation*}
$$

where $x_{1}, x_{2}, \ldots, x_{n}$ denote the coordinates of \mathbb{R}^{n}. Using (c) and (d), show that given $f \in C^{\infty}(\bar{\Omega})$, there exists an $\varepsilon_{0}>0$ sufficiently small such that for all $0 \leqslant \varepsilon<\varepsilon_{0}$, there exists a smooth solution $(u, v) \in C^{\infty}(\bar{\Omega}) \times C^{\infty}(\bar{\Omega})$ of the problem (3). [You may use without proof the fact, shown on example sheets, that $H^{k}(\Omega)$ is an algebra for sufficiently high k and that $\left.\|g h\|_{H^{k}(\Omega)} \leqslant C_{k}(\Omega)\|g\|_{H^{k}(\Omega)}\|h\|_{H^{k}(\Omega)}.\right]$

3 Let u_{0}, u_{1} be smooth functions on \mathbb{R}^{3} of compact support.
(a) Show the existence of a C^{∞} smooth solution $u: \mathbb{R}^{3+1} \rightarrow \mathbb{R}$ to

$$
\begin{equation*}
\square u=0, \quad u(0, x)=u_{0}(x), \quad \partial_{t} u(0, x)=u_{1}(x) \tag{1}
\end{equation*}
$$

Show that any other C^{2} function $\tilde{u}: \mathbb{R}^{3+1} \rightarrow \mathbb{R}$ satisfying (1) coincides with u. Is the assumption of compact support on u_{0} and u_{1} necessary for these statements?
(b) Show that the solution u satisfies the strong version of Huygens' principle, which you should formulate.
(c) Let (r, θ, ϕ) denote standard spherical coordinates on \mathbb{R}^{3}. Define $\xi=t-r$ and $\eta=t+r$, consider $r u$ as a function of $(\xi, \eta, \theta, \phi)$, and define

$$
\psi_{+}(\xi, \theta, \phi)=\lim _{\eta \rightarrow \infty} r u(\xi, \eta, \theta, \phi)
$$

and

$$
\psi_{-}(\eta, \theta, \phi)=\lim _{\xi \rightarrow-\infty} r u(\xi, \eta, \theta, \phi)
$$

Show that $\psi_{ \pm}$are well defined functions $\psi_{ \pm}: \mathbb{R} \times \mathbb{S}^{2} \rightarrow \mathbb{R}$ of compact support.
(d) Restrict now to the case where $\left(u_{0}, u_{1}\right)$ are spherically symmetric and can thus be considered as radial functions $u_{0}(r), u_{1}(r)$ in the space

$$
Z=\left\{\left(u_{0}(r), u_{1}(r)\right) \in C_{c}^{\infty}([0, \infty)) \times C_{c}^{\infty}([0, \infty)): \partial^{n} u_{0}(0)=0=\partial^{n} u_{1}(0), n \text { odd }\right\}
$$

Show that for for $\left(u_{0}, u_{1}\right) \in Z$, the functions $\psi_{ \pm}$are smooth, spherically symmetric and of compact support, and thus can be viewed as functions $\psi_{ \pm}(r) \in C_{c}^{\infty}(\mathbb{R})$, and moreover, that the associations

$$
\begin{equation*}
\left(u_{0}, u_{1}\right) \mapsto \psi_{+}, \quad\left(u_{0}, u_{1}\right) \mapsto \psi_{-} \tag{2}
\end{equation*}
$$

both define injective linear maps

$$
F_{ \pm}: Z \rightarrow C_{c}^{\infty}(\mathbb{R})
$$

Identify explicitly the images of these maps $X_{ \pm} \subset C_{c}^{\infty}(\mathbb{R})$ and compute moreover explicitly the resulting "scattering" map $S:=F_{+} \circ F_{-}^{-1}$

$$
S: X_{-} \rightarrow X_{+}
$$

taking $\psi_{-} \mapsto \psi_{+}$.

END OF PAPER

