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1 Consider a discrete-state continuous-time Markov process with rates wmn and
occupation probability P (n, t). The entropy for this system is defined to be

S(t) =
∑

n

P (n, t) logP (n, t).

(a) Derive an expression for the entropy production in this system.

Consider a system with two states, labelled by the index n = 1, 2. The dynamics is
modelled as a Markov process with rates w12 = α and w21 = β.

(b) Write down the evolution equation for the state probability P (n, t).

(c) Show that the solution for the initial condition P (1, 0) = p, P (2, 0) = 1− p is

P (1, t) =
1

α+ β

[
β + re−(α+β)t

]

P (2, t) =
1

α+ β

[
α− re−(α+β)t

]

where r = αp− β(1− p).
(d) Compute the relaxational and steady state entropy production for this system.

(e) Hence, or otherwise, show that this system is always in detailed balance as
t→∞.

Now consider a system with three states, labelled by the index n = 1, 2, 3 with rates
w12 = α,w21 = β, w23 = α,w32 = β, w31 = α,w13 = β.

(f) Write down the evolution equation for the state probability P (n, t). Show that
the solution for initial condition P (1, 0) = 1, P (2, 0) = 0, P (3, 0) = 0 is

P (1, t) =
1

3

[
1 + 2e−3φt cos

(√
3ψt
)]

P (2, t) =
1

3

[
1− 2e−3φt cos

(√
3ψt− π

3

)]

P (3, t) =
1

3

[
1− 2e−3φt cos

(√
3ψt+

π

3

)]

where φ = (α+ β)/2 and ψ = (α− β)/2.

(g) Show that the entropy production for this system is

Ṡ = (α− β) log
α

β
+
∑

i

[αP (i, t)− βP (j, t)] log
P (i, t)

P (j, t)

where j = i+ 1[mod 3] and that the entropy flowing out of the system is

Sneq = (α− β) log
α

β
.

(h) Hence, or otherwise, identify the condition for this system to be out of detailed
balance.
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2 Consider a particle with unit mass at position Xt ∈ R with velocity Vt ∈ R at time
t evolving according to the stochastic differential equation (SDE)

dVt = −
[
U ′(Xt) + γVt

]
dt+

√
2γkBTdWt, dXt = Vtdt, (1)

where kB is the Boltzmann constant and T the temperature.

a) Explain the physical system this may describe and the significance of the positive
constant γ. Write the Fokker–Planck equation satisfied by the probability density
f(x, v, t) of the stochastic process (Xt, Vt). Provide a heuristic argument at the level
of the SDE to eliminate Vt in the limit γ � 1 and obtain an equation for Xt alone.
Hence argue that, in this limit, the probability density p(x, t) =

∫
R f(x, v, t)dv satisfies

∂p

∂t
=

∂

∂x

[
D
∂p

∂x
+ φ′(x)p

]
. (2)

where D = kBT/γ and φ(x) = U(x)/γ.

b) Consider the potential φ(x) = sin(x) − F0x with F0 > 0. Show that if 0 6 F0 < 1,
φ(x) has one local minimum and one local maximum in each period, at mk = m+2πk
and Mk = M + 2πk, k ∈ Z, respectively. Sketch φ(x).

Now consider the function

p̂(x, t) =
∞∑

k=−∞
p(x+ 2πk, t), x ∈ Ω = (M0,M1). (3)

Show that p̂ is a probability density in Ω that satisfies (2) with periodic boundary
conditions. Show that the stationary solution is

p̂s(x) =
J0u(x)

D(1− e−2πF0/D)
with u(x) = e−φ(x)/D

∫ x+2π

x
eφ(y)/Ddy,

where J0 is a constant. What does J0 physically represent and how is it determined?

c) The mean velocity of the overdamped process v = E(dXt)/dt satisfies

v(t) =

∫ ∞

−∞
J(x, t)dx,

where J is the probability flux, J(x, t) = −D ∂p
∂x − φ′(x)p. Determine the steady-state

mean velocity vs and deduce from it the net direction of motion for F0 > 0.

[QUESTION CONTINUES ON THE NEXT PAGE]
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d) For F0 ∈ (0, 1) and kBT � 1, show that

vs ≈ 2π(k+ − k−),

where k+ and k− are the escape rates from m0 to M1 and M0 respectively, given by

k+ =

√
|φ′′(m0)φ′′(M1)|

2π
e−∆φ+/D, k− =

√
|φ′′(m0)φ′′(M0)|

2π
e−∆φ−/D,

and ∆φ+ = φ(M1)− φ(m0), ∆φ− = φ(M0)− φ(m0) are the potential barriers.

Use k± to reduce the continuous process Xt to a continuous-time random walk on the
local minima of φ(x), {mk}k∈Z, providing the transition rates W (k|l) to jump from
ml to mk for k, l ∈ Z. What is the distribution of the residence time in each state?

e) Consider now the same process in a bounded domain, so that the reduced model
contains a finite number of wells w0, w1, . . . , wK with absorbing boundaries at each
end. Write the pseudocode for an exact algorithm to simulate the random walk for
one particle.

Suppose now that we have N independent particles performing the same random
walk. Discuss how the implementation of the algorithm may change between the cases
N � K and N � K.

Hint: you may use without proof the Laplace’s formula that states, given Φ(x, y) : Ω→ R
of the form Φ(x, y) = φ1(x) + φ2(y) with the global maximum at (x, y) = (m,M) ∈ Ω,

∫

Ω
eλΦ(x,y)dxdy ∼ eλΦ(m,M)

λ

2π√
|∂2
xΦ(m,M)∂2

yΦ(m,M)|
, for λ� 1.
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3 A simple model for bacterial chemotaxis in one dimension consists of a particle (the
bacterium) at position Xt ∈ R and velocity Vt ∈ {−s, s} at time t, with

dXt = Vtdt, (1)

and Vt evolves according to a Poisson process: the particle at x changes its velocity from
s to −s at rate λ+(x), and from −s to s at rate λ−(x). The turning rates are given by

λ±(x) = λ0 ∓ bc′(x),

where c(x) describes the concentration of a chemoattractant substance (which is fixed in
time). Assume that |c′(x)| < λ0/b for all x ∈ R.

a) Is the stochastic process (Xt, Vt) discrete or continuous? Is (Xt, Vt) a Markovian
process? What about Xt alone?

b) Let p±(x, t)dx = P(Xt ∈ [x, x + dx), Vt = ±s) be the probability that, at time
t, the bacterium is at position x, moving with velocity ±s. Write the system of
equations satisfied by p+(x, t) and p−(x, t). By considering the total probability
density p(x, t) = p+(x, t) + p−(x, t) and the flux j(x, t) = s[p+(x, t)− p−(x, t)], obtain
a closed equation for p(x, t).

c) Consider the large λ0 limit, and find appropriate scalings for s and b such that the
total probability density p(x, t) evolves according to

∂p

∂t
=

∂

∂x

(
D
∂p

∂x
− χpc′

)
, (2)

Give the expressions of D and χ in terms of the parameters s, λ0, b, and the conditions
on c(x) for (2) to have a stationary solution in R. What stochastic differential equation
does Xt satisfy in this limit?

d) Consider a population of N bacteria at positions Xi
t , for i = 1, . . . , N , evolving

accoding to

dXi
t = χc′(Xi

t)dt−
1

N

N∑

j=1,j 6=i

u′(Xi
t −Xj

t )dt+
√

2DdW i
t , (3)

where W i
t are N independent Wiener processes and u(x) is a symmetric function,

u(−x) = u(x), and monotonically decreasing for x > 0. What is the physical
interpretation of u?

Consider the one-particle probability density p(x1, t), defined as p(x1, t)dx = P(X1
t ∈

[x1, x1 + dx)). Write down the evolution equation for p(x1, t) in terms of the two-
particle probability density P2(x1, x2, t), defined as

P2(x1, x2, t)dx1dx2 = P(X1
t ∈ [x1, x1 + dx1), X

2
t ∈ [x2, x2 + dx2)).

Derive a closed equation for p(x1, t) using the mean-field approximation as N →∞.

END OF PAPER
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