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A recently discovered multicellular microorganism exists in the form of a linear chain
of cells that can exhibit two distinct conformations of opposite curvature, with transitions
between the two triggered by light. A model for the energy of the filament of length L is

E =
1

2
A

∫ L

0
ds (κ− κ0)2 ,

where κ is the curvature and κ0 = ±H0 in the light (+) and dark (−).

(a) Working with the energy E in the Monge representation up to quadratic order in a
height function h(x, t) for x ∈ [0, L] describing the filament shape, find the linear equation
of motion for h and boundary conditions that result from the Stokesian force balance

ζ
∂r

∂t
= −δE

δr
.

Use the available constants to nondimensionalise the resulting PDE in a natural way.

(b) Suppose a filament has been kept in the dark for t < 0 sufficiently long that it reaches
its equilibrium shape. Find that shape. At t = 0 the light is turned on. Using the
dark-adapted shape as the initial condition, find the subsequent shape evolution using
a suitable set of basis functions constructed from the biharmonic operator. Awkward
projection integrals need not be evaluated analytically.

(c) Confirm that the shape evolution computed in (b) satisfies appropriate constraints on
the net force and torque on the filament.
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A bacterium swims in a viscous fluid by rotating a rigid flagellar filament relative
to its cell body. The centerline of the helical filament has radius R, total length L and the
helix is aligned with the cell body. Hydrodynamic interactions between the cell body and
the helical filament are neglected. Locomotion (both translation and rotation) is assumed
to take place only along the axis z of the helix.

(a) The hydrodynamics of the helical filament is described using resistive-force
theory for slender filaments (we denote the drag coefficients c‖ and c⊥). Explain briefly
the form of the drag law embodied in resistive force theory.

(b) The linear relationship between the hydrodynamic force F̃ez and torque T̃ez
experienced by the helix and the translation velocity Ũez and angular velocity Ω̃ez of the
helix is of the form

(
F̃

T̃

)

helix

= −
(
A B
B D

)(
Ũ

Ω̃

)

helix

, (†)

with A = (c‖ cos2 θ + c⊥ sin2 θ)L and D = (c‖ sin2 θ + c⊥ cos2 θ)R2L, where θ denotes the
angle between the z axis and the local tangent to the filament centreline. Compute the
value of B.

(c) We now consider the combined “cell + helix” system where the filament and cell
body undergo relative rotation and translate with identical velocity Uez. The cell body
rotates with angular velocity Ωez and the helical filament with angular velocity (Ω +ω)ez
in the laboratory frame of reference (so ω is the magnitude of the relative rotation). We
write for the cell body Fbody = −A0Ubody and Tbody = −D0Ωbody. Assuming the whole
cell to be force and torque-free, compute the swimming speed U of the bacterium and the
body rotation rate Ω as a function of A,B,D,A0, D0.

(d) Compute the value of the torque N applied by the bacterial motor (equal to the
hydrodynamic torque exerted by the helical filament on the fluid).

(e) We define the efficiency ε as the ratio between the useful swimming power (A0U
2)

and the power output of the motor (Nω). Compute ε. Assuming B2 � AD and D � D0

for common bacteria, find a simplified expression for ε. Use a scaling in the cell body size
by λ (i.e. so that A0 → λA0) in order to derive the maximum value of ε over all possible
cell body sizes.
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A spherical lipid vesicle of equilibrium radius R has membrane bending modulus kc
and surface tension σ0, and is in equilibrium at temperature T .

(a) Using a planar calculation with large-scale cutoff R and a molecular cutoff a, calculate
to quadratic order in shape deformations the fractional excess area α(σ0) = (A−Aproj)/A
of the membrane that is contained in thermal fluctuations, where A is the total membrane
area and Aproj = 4πR2 is the projected area of the membrane.

(b) A thin cylindrical tether of length L and radius r is now slowly pulled out from the
vesicle by a force F , and the system remains in thermal equilibrium. In the process, the
membrane tension increases to σ. If the tension remains in the regime σ � π2kc/a

2,
show that the change in the fractional area ∆α = α(σ0) − α(σ) contained in the vesicle
membrane fluctuations can be approximated by

∆α =
kBT

8πkc
ln

(
π2kc/A+ σ

π2kc/A+ σ0

)
.

(c) Assume that the change in area found in (b) is taken up completely by the tether, on
which fluctuations are negligible. A suitable total energy for the system is the sum of the
bending energy in the tether, the energy arising from the entropic elasticity, and the work
done by the force F ,

E =
1

2
kc

∫

tether
dS(2H)2 +A

kBTσ

8πkc
− FL,

where H is the mean curvature, and one may assume A = 4πR2 to leading order. Setting
σ0 = 0 for simplicity, minimise E with respect to both L and r, and find the force-extension
relationship for the tether. Using heuristic arguments, compare this result to the case of
a thether extracted from a reservoir at fixed tension σ.
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