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1 (a) Consider a Universe that consists of just baryons and photons. Show that,
during the radiation era, the sound speed of the photon-baryon fluid is

cs =
c√
3

[
3ρ̄b(z)

4ρ̄γ(z)
+ 1

]−1/2

,

where ρ̄b(z) and ρ̄γ(z) are the mean energy densities of baryons and photons at redshift z
and c is the speed of light.

The comoving Jeans length of a collisional fluid with homogenous density ρ̄b and
sound speed cs takes the form

λcomJ =
cs
a(t)

√
π

Gρ̄ b
,

where a(t) is the scalefactor. Deduce how the comoving Jeans length λcomJ for the baryons
behaves from before the epoch of matter-radiation equality teq to after the epoch of
recombination trec.

On a graph of comoving scale versus time, show the evolution of the comoving Jeans
length for adiabatic, isentropic perturbations of baryons in an Einstein-de Sitter Universe.

Now suppose the Universe contains cold dark matter particles which can be treated
as a collisionless fluid. How does the formula for the comoving Jeans length change?

Derive the behaviour of the comoving Jeans length for cold dark matter particles,
distinguishing the behaviour of λcomJ in the epochs when the cold dark matter particles
(i) are relativistic t < tNR, (ii) are non-relativistic but still coupled to the photons
tNR < t < tdec and (iii) are fully decoupled t > tdec. On a new plot, show the behaviour
of λcomJ from before the epoch of matter-radiation equality teq to after the epoch of
recombination trec.

(b) In a flat Universe with non-zero cosmological constant Λ, the equation governing
the evolution of the radius of a shell containing mass M in a spherically symmetric
perturbation is

d2r

dt2
=
L2

r3
− GM

r2
+

Λ

3
r.

Explain why the angular momentum L is a conserved quantity.

Show that the energy

E =
1

2

(
dr

dt

)2

+
1

2

L2

r2
− GM

r
− Λ

6
r2,

is conserved.

[QUESTION CONTINUES ON THE NEXT PAGE]

Part III, Paper 346



3

Assuming a uniform sphere with mass M and L = 0 has turnaround radius rta,
show that the potential energies at turnaround due to gravity and Λ are

WG,ta = −3

5

GM2

rta
, WΛ,ta = − 1

10
ΛMrta

2.

Show that, in the final virialized state, the kinetic energies and potential energies
are related by

2Tf +WG,f = 2WΛ,f ,

where Tf is the final kinetic energy.

Hence, show that the final radius rf satisfies the cubic equation

2η(rf/rta)3 − (2 + η)(rf/rta) + 1 = 0,

with η = Λ/(4πGρta) where ρta is the mean density at turnaround.

Show further that
rf

rta
≈ 1 − η/2

2 − η/2
,

Provide a physical interpretation of this result, in particular comparing the repulsive
or positive Λ case with the zero Λ case.
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2 Suppose a host dark matter halo H1 contains a subhalo H2. To a first approxima-
tion, the haloes are assumed to be point-like with masses M1 and M2 < M1 respectively.
They are in circular motion about their common centre of mass O. If the separation of H1

and H2 is R, show that the angular velocity of the line H1H2 in the centre of mass frame
is

|ω|2 =
G(M1 +M2)

R3
.

Let us consider the equilibrium points of a test particle S belonging to subhalo H2.
Let us introduce Cartesian (x, y, z) with origin at O, and with z-axis parallel to ω and
x-axis along the line H1H2. Give a physical reason why the equilibrium points lie in the
plane z = 0.

Show that the equilibrium points are the stationary points of

E(x, y) = −ω
2

2
|rS|2 −

GM1

|rS − r1|
− GM2

|rS − r2|
,

where rS, r1 and r2 are the position vectors of S, H1 and H2 respectively.

Let rS = (x, y, 0). Using R as the unit of length and G(M1 +M2)/R
2 as the unit of

energy, show that the stationary points on the line joining H1 and H2 are the extrema of

F (x) = −x
2

2
− 1− α
|x+ α| −

α

|x+ α− 1| ,

where α = M2/(M1 +M2).

Find the extrema in the limit of small α, and show that there are three equilibrium
points at:

L1 =
(

1− (α/3)1/3, 0, 0
)
,

L2 =
(

1 + (α/3)1/3, 0, 0
)
,

L3 =
(
−1− 5α/12, 0, 0

)
.

Are there any other equilibria?

Show that the tidal radius of H2 is

rt = R

(
M2

3M1

)1/3

,

and provide a physical explanation of the formula.

Explain qualitatively the changes to the tidal radius formula if (i) the haloes H1 and
H2 are extended masses and if (ii) the orbit of H2 is no longer circular.

The subhalo H2 contains both stars and dark matter. The length scale of the dark
matter is much greater than the stars. Explain why four tidal tails are formed.

Part III, Paper 346



5

3 The density of a cold dark matter halo (the NFW model) is

ρ(r) =
ρ0cδchar

(r/rs)(1 + r/rs)2
,

where δchar is a characteristic overdensity. The scale-radius rs is related to the halo
concentration c by rs = rv/c. Here, rv is the virial radius which is defined as the distance
from the centre of the halo within which the mean density is v times the present critical
density ρ0c . What is the virial mass Mv of the halo?

Give an order of magnitude estimate of v assuming an Einstein-de-Sitter Universe.

Given that δchar = vc3g(c)/3 for some unknown function g(c), show that the enclosed
mass is

M(s)

Mv
= g(c)

[
ln(1 + cs)− cs

1 + cs

]
,

where s = r/rv.

Derive the behaviour of the enclosed mass at large and small radii.

If the dark matter particles are warm rather than cold, what qualitative change
occurs to the central parts of the halo?

If Vv is the circular velocity at the virial radius, find the form of g(c) by verifying
that the gravitational potential of the NFW dark halo is

φ(s) = −g(c)V 2
v

ln(1 + cs)

s
.

Show that the circular speed is

V 2(s) = V 2
v

g(c)

s

[
ln(1 + cs)− cs

1 + cs

]
.

Plot the circular velocity curve of the NFW model for two different concentrations
and comment on its structure given the observed flatness of galaxy rotation curves.

Explain physically why NFW halos satisfy a mass-concentration relation.

At the present epoch, let the mass-concentration relation of NFW haloes be

c ∝M−0.1
v .

Suppose that a 1012M� dark matter halo has a virial radius of rv = 200 kpc and a
concentration c = 10. Estimate the virial radius, scalelength and concentration of a dark
halo that is 1024 times less massive.

What astrophysical object might reside in such a dark halo?
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4 From the momentum equation for a fluid in proper coordinates, derive the
corresponding equation in comoving coordinates as

∂v

∂t
+
ȧ

a
v +

1

a
v · ∇v = −1

a
∇Φ− 1

aρ̄(1 + δ)
∇P,

where a is the scalefactor, v is the peculiar velocity, Φ is the peculiar potential, P is the
pressure, ρ̄ is the mean background density and δ is the overdensity.

Give a physical interpretation of the relationship between the peculiar potential Φ
and the proper gravitational potential φ.

By linearizing the Euler equations for a pressureless fluid, show that

d

dt
(av) = −∇Φ.

Given that at early times, the Universe behaves like an Einstein-de Sitter cosmology,
show that

v = −∇Φi

a

∫
D(a)

a
dt,

where D(a) is the linear growth rate. Here, and henceforth, the subscripted roman i refers
to an initial or fiducial epoch.

Show that D(a) satisfies

D(a)

a
=

1

4πGρ̄i

d

dt

(
a2
dD

dt

)
.

Hence, show that the position x(t) of any particle is related to its position at the
initial epoch xi by (the Zeldovich approximation)

x(t) ≈ xi −
D(a)

4πGρ̄i
∇Φi.

Give a physical interpretation of the Zeldovich approximation.

Derive the linearised equation for the evolution of an overdensity in the Zeldovich
approximation.

Explain, with an example, how the Zeldovich approximation predicts the formation
of caustics in the final density field.

END OF PAPER
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