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1 Answer all parts of the question.

A simple model of a symmetric binary fluid in the presence of surfactants has the
following free energy functional:

F [φ,p] =

∫ [
a

2
φ2 +

b

4
φ4 +

κ

2
(∇φ)2 +

γ

2
(∇2φ)2 +

ν

2
|p|2 + λp.∇φ

]
dr (1)

Here p(r) = 〈∑α p̂αδ(r− rα)〉local is a vector field where p̂α is a unit vector pointing from
tail to head of surfactant molecule α; and b, κ, γ, ν are positive constants.

(a) Interpret the scalar order parameter φ and state why it is a statically conserved variable
in the sense that

∫
φ(r) dr = V φ̄ = constant in a system of fixed contents. Why is p not

conserved in the same sense?

(b) Explain the physical meaning of the λ term in (1) that bilinearly couples the two fields.
What determines the sign of λ?

(c) By performing the functional integral e−F [φ] =
∫
e−F [φ,p]D[p], or otherwise, show that

F [φ] =

∫ [
a

2
φ2 +

b

4
φ4 +

κ̃

2
(∇φ)2 +

γ

2
(∇2φ)2

]
dr

and find κ̃.

[Notes: (i) It is not necessary to go into Fourier coordinates to perform the integral
explicitly at the level of rigour required by this question. (ii) Credit can also be obtained
without doing the integral explicitly, but in that case you will need to explain why the
treatment you give is equivalent, for integrals of this form, to explicit integration.]

(d) What is the general effect of surfactants on interfacial tension, and why?

(e) Consider the system in the single-phase region (a > 0) and in one dimension (so that
p = p and Fourier wavevectors q = q). To study small fluctuations about a uniform
(non-critical) state, we can set b = 0 to obtain a Gaussian model in the two variables
Ψi = (φ, p). Show that the resulting free energy can be written

F [φ, p] =
1

2

∑

q

Ψi(q)Gij(q)Ψj(−q) (2)

where Gij(q) is a 2× 2 hermitian matrix, and give its explicit form.

(f) Show that the φ fluctuations obey

〈φ(q)φ(−q)〉 =
1

a+ κ̃q2 + γq4

(g) Calculate also 〈p(q)p(−q)〉, and discuss the q-dependence of this correlator in relation
to how the p and φ fluctuations are coupled via the bilinear term in (1).
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2 Answer all parts of the question.

Consider a 2D nematic for which the local free energy density is (in the “one elastic
constant” approximation)

F = aQijQji + b(QijQji)
2 +

K

2
(∇iQij)(∇kQkj)

where Q is a traceless symmetric second-rank tensor.

(a) Show that for a < 0 the free energy is minimized by a uniform state with Qij =
2λ0[ninj − δij/2], where n denotes a unit vector. Find the strength of nematic ordering,
λ0, in terms of a and b.

(b) Explain why, in a nonuniform system of slowly varying Q(r), it is a good approximation
to write Qij = 2λ0[ni(r)nj(r)− δij/2], ignoring any spatial variation in λ0. Show that the
resulting deformation energy is Felastic = 2Kλ20|(∇ · n)n + (n · ∇)n|2.
(c) Show that in a system where the director depends on the x coordinate only, so that

n = (cos θ(x), sin θ(x)) = (c, s), F can then be written as Felastic = K̃
2

(
dθ
dx

)2
and give an

expression for K̃.

(d) Consider a 2D nematic system confined by walls at x = 0, L, and unbounded in y,
with L large. The walls impose boundary conditions that the major axis of Q is along the
x-axis at x = 0 but along the y-axis at x = L. Show that the free energy (per unit length
in the y direction), F =

∫
Felasticdx, obeys δF/δθ = 0 whenever θ(x) = mπx/2L with

odd integer m. Show further that there are exactly two global minima, corresponding to
m = ±1.

(e) Observations of one such system show that the m = +1 solution is approached as
y → +∞ and the m = −1 solution is approached as y → −∞; away from these limits
and the walls, θ depends on both x and y. By considering the behaviour of the director
upon tracing a rectangular circuit that lies close to the walls except where |y| is very
large, deduce that this system must contain one or more topological defects, whose total
topological charge is q = −1

2 .

(f) Sketch the director field for a state of the lowest free energy consistent with these
observations, and explain your reasoning as to why this state minimizes F .

(g) Suppose instead the behaviour of θ(x, y) approaches m+πx/2L as y → ∞ and
m−πx/2L as y → −∞, with m± odd integers. What is the minimum number of |q| = 1

2
defects consistent with this behaviour? How many topological defects would be needed
if this were instead a 3D system, with r = (x, y, z) unbounded in z, and n(r) a 3D unit
vector subject to the same boundary conditions on n at x = 0, L, and showing the same
behaviour of the director (for all z) at y → ±∞?
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3 Answer all parts of the question.

A particle is described by a 3D position vector x(t). It is governed by a classical
action A =

∫
L(x, ẋ) dt with time independent Lagrangian, and coupled to an equilibrium

heat bath that creates a drag force −ζẋ and a thermal white-noise force f . That is,

− δA

δx(t)
= −ζẋ + f (1)

where the probability density of the noise is P[f(t)] = N exp
[
− 1

2σ2

∫
|f(t)|2 dt

]
.

(a) Give an expression for the probability density PF [x(t)] of a trajectory starting at
(x1, t1) and ending at (x2, t2). Give also the probability density PB[x(t)] of a time-reversed
trajectory, where time reversal means ẋ→ −ẋ but no sign change for − δA

δx(t) in (1). Stating
any assumptions that you need to make, show that

PF [x(t)]

PB[x(t)]
= exp

[
2ζ

σ2

∫ 2

1
ẋ · δA

δx(t)
dt

]
(2)

where the limits 1, 2 on the integral denote initial and final states.

(b) Show that the integrand in (2) is −dH/dt, where H(x, ẋ) ≡ ẋ·∂L/∂ẋ−L is Hamilton’s
function.

(c) Briefly explain the principle of detailed balance, and say why it requires PF /PB =
exp [−β∆H], where the notation should be explained. Find σ2 in terms of β and ζ.

(d) Consider now a particle obeying (1) but with an additional term F added to the right
hand side, representing an external force acting on the particle. Show that in this case

PF [x(t)]

PB[x(t)]
= exp

[
−β∆H + β

∫ 2

1
F(x) · ẋ dt

]
(3)

(e) Identifying the integral in (3) as the work done by F, show that

PF [x(t)]

PB[x(t)]
= exp [β∆Q] (4)

where ∆Q is the energy lost as heat to the thermal bath. (You may assume that in the
first law of thermodynamics the internal energy E is numerically equal to H.)

(f) Assuming that H, F, and |x| all remain bounded, show that ∆Q can increase linearly
with ∆t = t2 − t1, even as this time interval becomes very large, only if curl F 6= 0.

(g) A thermal system with nonconserved vector order parameter p(r) and free energy F [p]
obeys

ṗ(r) = Γ

(
− δF

δp(r)
+ Y

)
+
√

2kBTΓΛ(r, t)

where P[Λ] ∝ exp[−1
2

∫
|Λ(r, t)|2 dr dt], and the usual molecular field term is augmented

by an extra term Y(r, [p]) to represent an external forcing. Derive and interpret the result

PF [p(r, t)]

PB[p(r, t)]
= exp

[
−β∆F + β

∫ 2

1
(Y · ṗ) dr dt

]
.
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