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1 (a) Find the first two nonzero terms in the asymptotic expansion of the large
positive real root of the equation

exp(−x2) = εx

in the limit ε→ 0.

(b) Consider

I(ε) =

∫ 1

0

exp(x)dx√
ε+ x

.

Show that
I(ε) ∼ I(0)− 2

√
ε+ [e− I(0)]ε+O(ε3/2)

as ε→ 0.

(c) Find the asymptotic behaviour of

Jν(ν sechα) =
1

2πi

∫ ∞+iπ

∞−iπ
exp(ν sechα sinh t− νt)dt

for real ν and α, as ν →∞ with (i) α > 0, (ii) α = 0. In (ii) you should write your answer
in terms of the Gamma function

Γ(z) =

∫ ∞

0
tz−1 exp(−t)dt .

In each case the full details of the steepest descent contour need not be considered.
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2 (a) The oscillation of a simple pendulum with weak cubic damping is described by
the governing equation

ẍ+ ε|ẋ|2ẋ+ x = 0 ,

with x(0) = 1 and ẋ(0) = 0. In the limit ε→ 0, use the method of multiple scales to find
the leading-order solution valid up to and including times t = O(1/ε).

What happens up to and including times t = O(1/ε) when the governing equation
is replaced by

ẍ+ ε sin(ẋ)ẋ+ x = 0 ,

with the same initial conditions? [Hint: you may find it useful to use the power series
expansion of sin(ẋ).]

(b) Consider the propagation of sound waves along a two-dimensional duct, the
width of which varies slowly in the axial direction: specifically the duct is aligned in the x
direction and the walls of the duct are given by y = ±h(εx), where ε� 1. The unsteady
flow is described by the velocity potential

φ(x, y) exp(iωt) ,

which satisfies the Helmholtz equation

∇2φ+ k20φ = 0

subject to Dirichlet boundary conditions on the walls , i.e. φ(x,±h) = 0.

In the case h = h0 constant, show that the general solution of the problem takes
the form ∞∑

n=1

[An exp(iknx) +Bn exp(−iknx)] sin(nπy/h0) ,

where An, Bn are arbitrary constants and the wavenumbers kn are to be determined.

Now consider the case of h = h(X) varying, where X = εx. Use the method of
multiple scales to show that the general solution now takes the form

∞∑

n=0

[An(X) exp(iΘn) +Bn(X) exp(−iΘn)] sin(nπy/h) ,

where

Θn(X) =
1

ε

∫ X

0
kn(ξ)dξ

and An(X) and Bn(X) satisfy first-order ordinary differential equations which you should
determine. Solve these equations to determine An(X) and Bn(X) in terms of reference
values An(0) and Bn(0). [NB: you need not consider the case when kn(X) vanishes.]
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(a) Consider the equation

ε
d2y

dx2
+ (1 + x)

dy

dx
+ y = 0

with y(0) = y(1) = 1.

Find the first two nonzero terms in the inner and outer expansions in the limit ε→ 0.
Calculate a uniformly-valid approximation to y which is correct up to and including O(ε).

If the boundary conditions are now replaced by y(−1) = y(1) = 1 explain briefly,
without detailed calculation, how the structure of the asymptotic solution would change.

(b) Consider
(x+ εf)f ′ + f = 2x when 0 6 x 6 1

with f(1) = 2, in the limit ε→ 0.

You are given that when x = O(1)

f(x) ∼ 1 + x

x
− ε

(
(1− x2)2

2x3

)
.

Identify the size of the inner region, and calculate the first two nonzero terms in this inner
region.
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