MATHEMATICAL TRIPOS Part III

Friday, 10 June, 2022 $$ 9:00 am to 11:00 am

PAPER 336

PERTURBATION METHODS

Before you begin please read these instructions carefully

Candidates have TWO HOURS to complete the written examination.

Attempt no more than **TWO** questions. There are **THREE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

SPECIAL REQUIREMENTS None

Cover sheet Treasury tag Script paper Rough paper

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 (a) Find the first two nonzero terms in the asymptotic expansion of the large positive real root of the equation

$$\exp(-x^2) = \epsilon x$$

in the limit $\epsilon \to 0$.

(b) Consider

$$I(\epsilon) = \int_0^1 \frac{\exp(x) dx}{\sqrt{\epsilon + x}} .$$

Show that

$$I(\epsilon) \sim I(0) - 2\sqrt{\epsilon} + [e - I(0)]\epsilon + O(\epsilon^{3/2})$$

as $\epsilon \to 0$.

(c) Find the asymptotic behaviour of

$$J_{\nu}(\nu \operatorname{sech} \alpha) = \frac{1}{2\pi \mathrm{i}} \int_{\infty - \mathrm{i}\pi}^{\infty + \mathrm{i}\pi} \exp(\nu \operatorname{sech} \alpha \sinh t - \nu t) \mathrm{d}t$$

for real ν and α , as $\nu \to \infty$ with (i) $\alpha > 0$, (ii) $\alpha = 0$. In (ii) you should write your answer in terms of the Gamma function

$$\Gamma(z) = \int_0^\infty t^{z-1} \exp(-t) dt$$

In each case the full details of the steepest descent contour need not be considered.

CAMBRIDGE

2 (a) The oscillation of a simple pendulum with weak cubic damping is described by the governing equation

$$\ddot{x} + \epsilon |\dot{x}|^2 \dot{x} + x = 0 ,$$

with x(0) = 1 and $\dot{x}(0) = 0$. In the limit $\epsilon \to 0$, use the method of multiple scales to find the leading-order solution valid up to and including times $t = O(1/\epsilon)$.

What happens up to and including times $t = O(1/\epsilon)$ when the governing equation is replaced by

$$\ddot{x} + \epsilon \sin(\dot{x})\dot{x} + x = 0 ,$$

with the same initial conditions? [Hint: you may find it useful to use the power series expansion of $\sin(\dot{x})$.]

(b) Consider the propagation of sound waves along a two-dimensional duct, the width of which varies slowly in the axial direction: specifically the duct is aligned in the x direction and the walls of the duct are given by $y = \pm h(\epsilon x)$, where $\epsilon \ll 1$. The unsteady flow is described by the velocity potential

$$\phi(x,y)\exp(\mathrm{i}\omega t)$$
,

which satisfies the Helmholtz equation

$$\nabla^2 \phi + k_0^2 \phi = 0$$

subject to Dirichlet boundary conditions on the walls , i.e. $\phi(x, \pm h) = 0$.

In the case $h = h_0$ constant, show that the general solution of the problem takes the form

$$\sum_{n=1}^{\infty} \left[A_n \exp(\mathrm{i}k_n x) + B_n \exp(-\mathrm{i}k_n x) \right] \sin(n\pi y/h_0) ,$$

where A_n, B_n are arbitrary constants and the wavenumbers k_n are to be determined.

Now consider the case of h = h(X) varying, where $X = \epsilon x$. Use the method of multiple scales to show that the general solution now takes the form

$$\sum_{n=0}^{\infty} \left[A_n(X) \exp(\mathrm{i}\Theta_n) + B_n(X) \exp(-\mathrm{i}\Theta_n) \right] \sin(n\pi y/h) ,$$

where

$$\Theta_n(X) = \frac{1}{\epsilon} \int_0^X k_n(\xi) \mathrm{d}\xi$$

and $A_n(X)$ and $B_n(X)$ satisfy first-order ordinary differential equations which you should determine. Solve these equations to determine $A_n(X)$ and $B_n(X)$ in terms of reference values $A_n(0)$ and $B_n(0)$. [NB: you need not consider the case when $k_n(X)$ vanishes.]

[TURN OVER]

3

(a) Consider the equation

$$\epsilon \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + (1+x)\frac{\mathrm{d}y}{\mathrm{d}x} + y = 0$$

with y(0) = y(1) = 1.

Find the first two nonzero terms in the inner and outer expansions in the limit $\epsilon \to 0$. Calculate a uniformly-valid approximation to y which is correct up to and including $O(\epsilon)$.

If the boundary conditions are now replaced by y(-1) = y(1) = 1 explain briefly, without detailed calculation, how the structure of the asymptotic solution would change.

(b) Consider

$$(x + \epsilon f)f' + f = 2x$$
 when $0 \le x \le 1$

with f(1) = 2, in the limit $\epsilon \to 0$.

You are given that when x = O(1)

$$f(x) \sim \frac{1+x}{x} - \epsilon \left(\frac{(1-x^2)^2}{2x^3}\right)$$
.

Identify the size of the inner region, and calculate the first two nonzero terms in this inner region.

END OF PAPER