
MATHEMATICAL TRIPOS Part III

Friday, 3 June, 2022 9:00 am to 12:00 pm

PAPER 333

FLUID DYNAMICS OF CLIMATE

Before you begin please read these instructions carefully

Candidates have THREE HOURS to complete the written examination.

Attempt no more than THREE questions.
There are FOUR questions in total.
The questions carry equal weight.

Cartesian co-ordinates (x, y, z) are used with z denoting the upward vertical.
The corresponding velocity components are (u, v, w). Unless stated otherwise,

g is the gravitational acceleration.

STATIONERY REQUIREMENTS SPECIAL REQUIREMENTS
Cover sheet None
Treasury tag
Script paper
Rough paper

You may not start to read the questions
printed on the subsequent pages until
instructed to do so by the Invigilator.



2

1 The linearised equations for shallow-water motion on an f -plane are:

ut − fv = −φx (1)

vt + fu = −φy (2)

φt + c2(ux + vy) = 0, (3)

where f is a constant.

(i) Give a brief physical interpretation of each equation.

(ii) Show that the potential vorticity P = vx − uy − fφ/c2 satisfies Pt = 0.

(iii) Show that plane-wave disturbances with wavenumber (k, l) can have three
possible frequencies corresponding to the roots of

ω(ω2 − Ω2(k, l)) = 0

where the form of Ω(k, l) should be derived. Interpret the form of the dispersion relation,
including the form of Ω(k, l) when (k2 + l2)1/2 is small or large, with the meaning of
‘small’ and ‘large’ to be explained, and the corresponding separation of u, v and φ into
zero-frequency (ω = 0) and oscillatory (ω = ±Ω(k, l)) parts.

(iv) Use the results determined above to give arguments why, for an initial condition
u(x, y, 0) = 0, v(x, y, 0) = 0, φ(x, y, 0) = φ0sgn(x) there is an adjustment to a steady state
φ = Φ(x, y), with Φ(x, y) satisfying the equation

Φxx + Φyy − (f2/c2)Φ = (−f2/c2)φ0sgn(x). (4)

Why at a large but finite value of t does this solution only apply for a finite range
of x?

Now and for the remainder of the question consider the case where the fluid is
confined between rigid boundaries at y = 0 and y = L.

(v) The equation for the steady adjusted state in this case is (4) but additional
boundary conditions are needed. One is φx = 0 on y = 0 and y = L. Why? This
condition by itself is not sufficient to determine a unique solution. Show, giving the
required conditions on Ψ, that a function Ψ(y) can be added to any solution and still
satisfy the equation and the φx = 0 boundary condition.

(vi) Show that with the rigid boundaries the equations have additional ‘Kelvin-wave’
solutions in 0 < y < L with v = 0, u = F±(x± ct)ũ±(y), φ = F±(x± ct)φ̃±(y), where the
forms of ũ±(y) and φ̃±(y) are to be determined.

(vii) Show also that the presence of the boundaries implies that

(
∂

∂t
± 1

c

∂

∂x
)

∫ L

0
e∓fy/c(u+

1

c
φ) dy = 0. (5)

(viii) Use (5) to deduce additional conditions on the solution of (4) that determine
a unique solution for the steady adjusted state.
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2 (a) Consider steady horizontal flow, uniform in x and y, on an f -plane and above
a flat surface z = 0. The fluid has a constant kinematic viscosity ν implying that the
horizontal momentum equations contain a term ν(∂2u/∂z2, ∂2v/∂z2), representing the
viscous force per unit mass, and a non-slip condition is applied at z = 0. Far above the
surface the horizontal flow is equal to (U, 0) and is in geostrophic balance.

Solve the steady momentum equations to obtain the horizontal velocity (u(z), v(z)).
What is the vertical length scale δ on which the horizontal velocity varies? Calculate the
vertically integrated horizontal transport uT by the flow anomaly (u(z) − U, v(z)). How
does this relate to the vertically integrated momentum balance for the fluid?

Assuming that your results apply to the case where the horizontal velocity far above
the surface varies slowly in x and y deduce an expression for ∇.uT. What is the resulting
effective boundary condition on the vertical velocity w seen by the interior flow for z � δ?

(b) Now consider quasi-geostrophic flow on the f -plane with constant buoyancy
frequency N . (You do not have to derive the quasi-geostrophic equations but should state
clearly any properties of quasi-geostrophic flow that you use.) Explain, with reference to
the form of the buoyancy/density equation, why the leading-order approximation to the
vertical velocity w is given by

w = − f

N2

Dgψz

Dt

where ψ is the quasi-geostrophic stream function and Dg/Dt denotes the rate of change
following the geostrophic flow.

Using the effective boundary condition derived in (a), give the equations governing
the time evolution of quasi-geostrophic flow of a viscous fluid above a rigid boundary at
z = 0, assuming that ν is small enough that viscosity can be neglected in the interior flow
and that δ is small enough that the effective boundary condition can be applied at z = 0.
(Your equations should include one that applies in the interior, z > 0 and one that applies
on the boundary z = 0.)

Assume that the equations can be linearised about a state of rest and solve for the
evolution of ψ(x, y, z, t) when ψ(x, y, z, 0) = ψ0 sin(kx), i.e. the flow is initially independent
of y and z.

Describe the evolution, including the dependence on f , N and the horizontal scale
k−1 of the initial flow anomaly. Deduce that the effect of the lower boundary is felt only
a finite distance into the fluid. Comment on the reasons for this.
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3 When linearised about a uniform flow (U, 0, 0) the quasi-geostrophic potential
vorticity equation on a β-plane has the form

(
∂

∂t
+ U

∂

∂x

)
q′ + β

∂

∂x
ψ′ = Q′ (1)

where q′ = ψ′xx + ψ′yy + (f20 /N
2)ψ′zz with f0 the Coriolis parameter and N the buoyancy

frequency (assumed constant). Q′ represents the effect of forcing or dissipation processes.

From the equation above derive the Eliassen-Palm wave activity relation

∂A
∂t

+∇.F =
Q′q′

β
, (2)

where A = q′2/2β and F = (0,−u′v′,−gf0v′ρ′/ρ0N2) = (0, F
(y)
, F

(z)
).

In the expressions above ( ) indicates an x-average and ( )′ denotes the difference from
the average, i.e. χ′ = χ− χ for any quantity χ. In (1) the various quantities are assumed
to have zero x-average by suitable choice of Q′. You may assume u′ = −ψ′y, v′ = ψ′x and
ρ′ = −f0ρ0ψ′z/g. [Hint: You may find it helpful to recall results, for an arbitrary function
η, such as ηx = 0 and corollaries such as ηxηyy = (ηxηy)y − ηxyηy = (ηxηy)y. ]

Explain the relation of each of the terms in (2) to the forcing, propagation and
dissipation of waves.

The term ∇.F can also be shown to be equivalent to the x-average force in the
x-direction due to the waves. Explain why this force is zero if the waves are steady and
there is no forcing or dissipation (i.e. the term Q′ in (1) is zero).

Now consider the explicit case of a background flow (U, 0, 0) in z > 0 confined
between rigid boundaries at y = 0 and y = L, with U > 0. Waves are forced by a
steady topographic perturbation h′(x, y) = <(ĥeikx) sin ly at the lower boundary, with
l = π/L and k > 0. There is thermal damping acting, implying that Q′ in (1) is given
by Q′ = −αf20ψ′zz/N2 where α > 0. Show that there is a solution for ψ′ of the form

<
(
ψ̂(z)eikx

)
sin ly, where ψ̂(z) satisfies the ordinary differential equation

f20
N2

d2ψ̂

dz2
−
(
k2 + l2

)
ψ̂ +

β

U
ψ̂ =

iα

kU

f20
N2

d2ψ̂

dz2
. (3)

The lower boundary condition implies that dψ̂/dz = C(k, U, α)ĥ at z = 0, where
C(k, U0, α) is complex.

Show that (3) has a solution such that |ψ̂(z)| → 0 as z → ∞, whatever the sign of
(β/U)−k2− l2. Distinguish between the forms of the solution for 0 < U < β/(k2+ l2) and
for 0 < β/(k2+l2) < U . [ Hint: You may find it helpful to write (1−iα/kU)−1/2 = γr+iγi
where (since k, α and U are all assumed positive in this case) γr > 0 and γi > 0. ]

Show that for this solution F
(y)

= 0. Evaluate F
(z)

and deduce the form of the
x-average force exerted by the waves. Comment on the implication for the force exerted
by the flow on the lower boundary topography.
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4 Consider the equations for shallow-water motion on an equatorial β-plane, assuming
that geostrophic balance holds in the y-momentum equation and with frictional and
thermal damping terms included respectively in the x-momentum and thickness equations:

ut − βyv = −φx − γu (1)

βyu = −φy (2)

φt + c2(ux + vy) = −αφ. (3)

The constants α and γ are both positive.

Consider plane-wave equatorially trapped solutions of the form u =
<(û(y)ei(kx−ωt)), v = <(v̂(y)ei(kx−ωt)), φ = <(φ̂(y)ei(kx−ωt)). [You may assume that the ei-
genvalue problem Vyy−y2V = λV with |V | → 0 as |y| → ∞ has eigenvalues λn = −(2n+1)
for n = 0, 1, . . . with corresponding eigenfunctions Vn(y) = Hn(y) exp(−y2/2), where the
Hn(.) are the Hermite polynomials, with H0(y) = 1, H1(y) = 2y, H2(y) = 4y2 − 2, etc.]

(i) Show that there is a Kelvin-wave solution with v̂(y) = 0. Give the dispersion
relation ω(k) and the form of each of the functions û(y) and φ̂(y). Note any restrictions
on k for equatorially trapped solutions to exist.

(ii) Show that there is a family, labelled by n = 1, 2, . . . of Rossby-wave solutions
with v̂(y) 6= 0. Give the dispersion relation (as a function of n) and the corresponding
form of the function v̂(y). Note any restrictions on k for equatorially trapped solutions to
exist. [Hint: Defining a new variable Y = σy where σ is a suitably chosen constant, in
general complex, may be helpful.]

In each of your answers above, provide careful explanation where some roots of an
algebraic equation are rejected and some are retained.

(iii) Now consider the case where ω is given, and specified to be zero, and the
(complex) value of k is to be deduced. This gives insight into the x-structure of the
response to a localised forcing. You may assume that =(k) > 0 implies a response that
appears to the east of the forcing and decays with distance away from the forcing region
and that =(k) < 0 correspondingly implies a response that appears to the west of the
forcing and decays with distance away from it.

Find the possible values of k from the dispersion relations obtained in (i) and (ii)
above. Use these to describe the structure of the response to a forcing localised on the
equator near x = 0. Comment in particular on the decay scales of the response to the east
and to the west of the forcing region and on the latitudinal scale of the response, including
the dependence on α and on γ.
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