MATHEMATICAL TRIPOS Part III

Wednesday, 8 June, 2022 9:00 am to 12:00 pm

PAPER 332

FLUID DYNAMICS OF THE SOLID EARTH

Before you begin please read these instructions carefully

Candidates have THREE HOURS to complete the written examination.

Attempt all **THREE** questions. There are **THREE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

SPECIAL REQUIREMENTS None

Cover sheet Treasury tag Script paper Rough paper

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

(a) Rain falls on a two-dimensional, unconfined aquifer at rainfall rate R, which results in a groundwater table of thickness h(x,t) that feeds a river at x = 0 and extends to the drainage divide at x = L, across which there is no groundwater flow.

 $\mathbf{2}$

Starting from the equations for flow of water of viscosity μ and density ρ in a porous medium with porosity $1 - \phi$ and permeability k derive the leading-order equations for the transient response of the groundwater table in the limit $h \ll L$,

$$(1-\phi)\frac{\partial h}{\partial t} = \frac{k\rho g}{\mu}\frac{\partial}{\partial x}\left(h\frac{\partial h}{\partial x}\right) + R,\tag{1}$$

where g is the gravitational acceleration.

If the height of the groundwater table at the river h(0,t) = 0 derive the response of the groundwater table, providing expressions for the flux into the river q(0,t) and the asymptotic form of the groundwater table near the river $(x \ll L)$ in three cases:

- (i) the transient groundwater response to rainfall R > 0 for t > 0 starting from initial condition h(x, 0) = 0;
- (ii) the steady-state groundwater profile when R is constant, as $t \to \infty$;
- (iii) the late-time transient drawdown of the aquifer when R = 0.

[You do not need to solve intractable nonlinear equations but should set out clearly what equations need to be solved with what boundary conditions.]

(b) Now consider the influence of tidal forcing on the flow of the aquifer. Approximate the tidal forcing as a small variation in local gravity,

$$g = g_0(1 + \epsilon e^{i\omega t}),$$

where $\epsilon \ll 1$ and ω is the tidal frequency. The aquifer behaves as an isotropic, poroelastic medium and you may approximate the effective stress as

$$\sigma_e = E \frac{\phi_0 - \phi}{\phi_0}$$

where E is Young's modulus and ϕ_0 is the undeformed solid fraction. Derive an expression for the solid fraction of the aquifer,

$$\phi = \phi_0 \exp[g'(h-z)/l_c],$$

in terms of the variation of gravity $g' = g/g_0$ and the compaction length l_c , which should be expressed in terms of constant physical properties. Show that in the limit $h \ll l_c$, the volume of water per unit horizontal distance is

$$V = (1 - \phi_0)h - \phi_0 \frac{g'h^2}{2l_c}.$$

Derive an integral expression for the flux of water into the river in terms of V and hence, using scaling or otherwise, estimate the magnitude of the variation in the flux relative to its mean.

Part III, Paper 332

1

 $\mathbf{2}$

A solid grows one-dimensionally into a supercooled melt of initial temperature $T_{\infty} < T_m$, where T_m is the equilibrium freezing temperature of the melt. The rate of solidification is determined kinetically by

$$V = \mathcal{G}(T_m - T_i),$$

where \mathcal{G} is a constant and T_i is the temperature of the solid-melt interface. Show that there is a steady state with $V = \mathcal{G}\Delta T(1-\mathcal{S})$, provided the Stefan number $\mathcal{S} = L/c_p\Delta T < 1$, where $\Delta T = T_m - T_\infty$, L is the latent heat of fusion and c_p is the specific heat capacity.

Use a linear stability analysis to find a general dispersion relation for the growth rate of perturbations to the interface and thermal field, and show that the interface is marginally stable when

$$\frac{\mathcal{S}}{1-\mathcal{S}} = \Gamma \frac{\lambda}{\lambda-1} \alpha^2,$$

where

$$\lambda = \frac{1}{2} \left(1 + \sqrt{1 + 4\alpha^2} \right).$$

Here, α is the dimensionless wavenumber, lengths are scaled by κ/V , and $\Gamma = \gamma \mathcal{G}/\kappa$, where γ is the constant of proportionality between the interfacial undercooling related to curvature and the curvature itself, and κ is the thermal diffusivity.

Using sketch graphs and an asymptotic analysis, show that the solid is morphologically unstable if $S > \Gamma/(1 + \Gamma)$ and that the range of unstable wavenumbers becomes infinite as $S \to 1$. a) A two-dimensional terrestrial ice sheet, treated as a layer of Newtonian fluid of kinematic viscosity ν and thickness h(x,t) flowing over flat bedrock, is subject to a net accumulation rate

4

$$a = A \quad \text{if} \quad h > h_s$$

$$a = -A \quad \text{if} \quad h < h_s,$$

where x is horizontal distance, t is time, A is constant, and the elevation of the snow line h_s is constant.

Use thin-film theory to develop evolution equations for h(x,t) in the regions $|x| < x_s$ and $x_s < |x| < x_N$, where $|x| = x_s$ are the horizontal positions of the snow line and $|x| = x_N$ are the termini of the ice sheet. What boundary/interfacial conditions apply to these equations at the ice divide x = 0, the termini $x = x_N$ and the snow line $x = x_s$?

Find the steady shape h(x) of the ice sheet and use your solution to determine its maximum thickness h_0 , its horizontal extent x_N , and the horizontal position of the snow line

$$x_s = \left(\frac{g}{6\nu A}\right)^{1/2} h_s^2.$$

Deduce that your analysis is appropriate provided that $A \ll gh_s^2/\nu$.

b) Now consider the case of a marine ice sheet in which the bedrock is a constant distance b below sea level. Derive the boundary conditions that apply to the ice sheet at the grounding line $|x| = x_G$. Assuming that for the marine ice sheet $A \ll g' h_G^2 / \nu$, determine that the position of the grounding line x_G is given by

$$x_G = 2x_s - \frac{\sqrt{gg'}}{6\nu A}h_G^3,$$

where $g' = g(\rho_w - \rho)/\rho_w$, ρ_w is the density of sea water, and $h_G = b\rho_w/\rho$ is the thickness of the ice sheet at the grounding line. Hence show that the horizontal position of the snow line is now

$$x_s \approx \left(\frac{g}{6\nu A}\right)^{1/2} \left(h_s^4 + \frac{g'}{6\nu A}h_G^6\right)^{1/2}$$

What is the maximum thickness of the marine ice sheet?

END OF PAPER

Part III, Paper 332