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(a) Rain falls on a two-dimensional, unconfined aquifer at rainfall rate R, which results
in a groundwater table of thickness h(x, t) that feeds a river at x = 0 and extends
to the drainage divide at x = L, across which there is no groundwater flow.

Starting from the equations for flow of water of viscosity µ and density ρ in a porous
medium with porosity 1− φ and permeability k derive the leading-order equations
for the transient response of the groundwater table in the limit h� L,

(1− φ)
∂h

∂t
=
kρg

µ

∂

∂x

(
h
∂h

∂x

)
+R, (1)

where g is the gravitational acceleration.

If the height of the groundwater table at the river h(0, t) = 0 derive the response of
the groundwater table, providing expressions for the flux into the river q(0, t) and
the asymptotic form of the groundwater table near the river (x� L) in three cases:

(i) the transient groundwater response to rainfall R > 0 for t > 0 starting from
initial condition h(x, 0) = 0;

(ii) the steady-state groundwater profile when R is constant, as t→∞;

(iii) the late-time transient drawdown of the aquifer when R = 0.

[You do not need to solve intractable nonlinear equations but should set out clearly
what equations need to be solved with what boundary conditions.]

(b) Now consider the influence of tidal forcing on the flow of the aquifer. Approximate
the tidal forcing as a small variation in local gravity,

g = g0(1 + εeiωt),

where ε � 1 and ω is the tidal frequency. The aquifer behaves as an isotropic,
poroelastic medium and you may approximate the effective stress as

σe = E
φ0 − φ
φ0

,

where E is Young’s modulus and φ0 is the undeformed solid fraction. Derive an
expression for the solid fraction of the aquifer,

φ = φ0 exp[g′(h− z)/lc],

in terms of the variation of gravity g′ = g/g0 and the compaction length lc, which
should be expressed in terms of constant physical properties. Show that in the limit
h� lc, the volume of water per unit horizontal distance is

V = (1− φ0)h− φ0
g′h2

2lc
.

Derive an integral expression for the flux of water into the river in terms of V and
hence, using scaling or otherwise, estimate the magnitude of the variation in the
flux relative to its mean.
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A solid grows one-dimensionally into a supercooled melt of initial temperature
T∞ < Tm, where Tm is the equilibrium freezing temperature of the melt. The rate of
solidification is determined kinetically by

V = G(Tm − Ti),

where G is a constant and Ti is the temperature of the solid–melt interface. Show that there
is a steady state with V = G∆T (1 − S), provided the Stefan number S = L/cp∆T < 1,
where ∆T = Tm − T∞, L is the latent heat of fusion and cp is the specific heat capacity.

Use a linear stability analysis to find a general dispersion relation for the growth
rate of perturbations to the interface and thermal field, and show that the interface is
marginally stable when

S
1− S = Γ

λ

λ− 1
α2,

where

λ =
1

2

(
1 +

√
1 + 4α2

)
.

Here, α is the dimensionless wavenumber, lengths are scaled by κ/V , and Γ = γG/κ,
where γ is the constant of proportionality between the interfacial undercooling related to
curvature and the curvature itself, and κ is the thermal diffusivity.

Using sketch graphs and an asymptotic analysis, show that the solid is morpholo-
gically unstable if S > Γ/(1 + Γ) and that the range of unstable wavenumbers becomes
infinite as S → 1.
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a) A two-dimensional terrestrial ice sheet, treated as a layer of Newtonian fluid of
kinematic viscosity ν and thickness h(x, t) flowing over flat bedrock, is subject to a
net accumulation rate

a = A if h > hs

a = −A if h < hs,

where x is horizontal distance, t is time, A is constant, and the elevation of the snow
line hs is constant.

Use thin-film theory to develop evolution equations for h(x, t) in the regions |x| < xs
and xs < |x| < xN , where |x| = xs are the horizontal positions of the snow line and
|x| = xN are the termini of the ice sheet. What boundary/interfacial conditions
apply to these equations at the ice divide x = 0, the termini x = xN and the snow
line x = xs?

Find the steady shape h(x) of the ice sheet and use your solution to determine its
maximum thickness h0, its horizontal extent xN , and the horizontal position of the
snow line

xs =
( g

6νA

)1/2
h2s.

Deduce that your analysis is appropriate provided that A� gh2s/ν.

b) Now consider the case of a marine ice sheet in which the bedrock is a constant
distance b below sea level. Derive the boundary conditions that apply to the ice
sheet at the grounding line |x| = xG. Assuming that for the marine ice sheet
A� g′h2G/ν, determine that the position of the grounding line xG is given by

xG = 2xs −
√
gg′

6νA
h3G,

where g′ = g(ρw − ρ)/ρw, ρw is the density of sea water, and hG = bρw/ρ is the
thickness of the ice sheet at the grounding line. Hence show that the horizontal
position of the snow line is now

xs ≈
( g

6νA

)1/2
(
h4s +

g′

6νA
h6G

)1/2

.

What is the maximum thickness of the marine ice sheet?
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