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(a) Use the Papkovich–Neuber representation for Stokes flow, explaining your choice
of potential, to determine the flow due to a couple G acting on a rigid sphere, radius a
centred at x = 0, in unbounded fluid.

(b) Calculate the vorticity of the flow u(x) = −x·A·x x/r5 due to a stresslet of
strength 8πµA/3.

(c) Two force-free rigid spheres of radius a, denoted by i = 1, 2, in unbounded fluid
are subject to applied couples Gi and respond with rigid-body motions Ui+Ωi∧x relative
to their centres. Let R denote the vector distance from sphere 1 to sphere 2.

(i) Briefly explain why if G2 = 0 the velocities of the two spheres must have the form

Ui = αi G1 ∧R/(µa3) , i = 1, 2

for some functions α1(R/a) and α2(R/a) (which need not be determined).

What is the analogous result for the angular velocities Ωi?

You are now given that R� a. For convenience, let Ω denote G1/8πµa
3.

(ii) Let G2 = 0. Find the leading-order approximations to U2 and Ω2.

Find the leading-order term in the perturbation flow due to sphere 2 and deduce
that the leading-order correction to Ω1 is given by

Ω1 −Ω = −15a6

4R6

(
Ω− Ω·R R

R2

)
.

(iii) Now let G2 be such that Ω2 = 0. Show that the leading-order approximation to
U1 is

U1 = −a
6Ω ∧R

2R6
.

Briefly explain why the next correction to U2, beyond the leading-order answer to
part (ii), is O(Ωa9/R8). [Do not attempt to calculate it!]

[
You may assume the Faxén formulae

U =
F

6πµa
+ u∞ +

a2

6
∇2u∞ , Ω =

G

8πµa3
+

1

2
ω∞ ,

but should explain how you apply them. You may also assume that the full perturbation
flow produced by adding a rigid sphere to a uniform straining flow u = E·x is given by

u′(x) = −5

2
x·E·x x

(a3
r5
− a5

r7

)
−E·xa

5

r5
.

]
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The rupture of a thin sheet of viscous fluid due to an attractive (van der Waals)
force per unit area between the two surfaces of the sheet can be analysed in a similar
manner to the Rayleigh instability:

Let the sheet occupy the region −h(x, t) 6 y 6 h(x, t). Assume that the effect of
the attraction is simply to modify the usual stress boundary condition on each interface
to

[σ·n]+− =

(
V

h3
+ γκ

)
n,

where V > 0 is a constant coefficient of attraction, γ is the constant coefficient of surface
tension, n is the normal to the interface and κ is its curvature. Gravity and the surrounding
air should be neglected.

Consider small symmetric perturbations to a uniform thickness h0 such that
h = h0 + η(x, t), where η ∝ exp(ikx + st), |η| � h0 and |ηx| � 1. Obtain the linearized
boundary conditions at y = h0. Using Papkovich–Neuber potentials with the appropriate
symmetry in y, deduce that the growth rate of the rupture instability is given by

s =
3V

µh30

(1− ΓK2) sinh2K

K(2K + sinh 2K)
, (1)

where K = kh0, and identify the constant Γ.

Sketch the form of s(K) for the cases Γ = 0 and Γ = 1, and comment on the
physical interpretation of the long and short wavelength behaviour. What additional
physical effects might modify your prediction of the most unstable wavelength?

The surfaces of a planar soap film are uniformly covered with surfactant, which
reduces the unperturbed coefficient of surface tension to a value γ0. Use physical
arguments, with diagrams, to explain why the surfactant decreases the growth rate of
the rupture instability relative to that of a surfactant-free sheet with constant surface
tension γ0. [Mathematical analysis is not required.]

In the limit of strong surfactant effects, (1) is replaced by

s =
3V

µh30

(1− ΓK2)(sinh 2K − 2K)

4K cosh2K
.

For the case Γ � 1 find the maximum growth rate. Comment on the lifetime of a soap
bubble.
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A rigid cylindrical tube, radius a, contains fluid of viscosity µ and a force-free,
couple-free rigid sphere with radius b and centre at distance c (with b + c < a) from the
axis of the tube. Far ahead of and behind the sphere there is uniform Poiseuille flow.
Explain why:

(i) c is constant as the sphere is carried along by the flow;

(ii) a

∫ x2

x1

∫ 2π

0
σrx(a, θ, x) dθ dx = πa2[p(x2)− p(x1)],

where (r, θ, x) are cylindrical polar coordinates aligned with the tube, and x1 and x2 are
two positions far from the sphere.

Consider the case b = (1 − ε)a and c = ελa, where ε � 1 and 0 6 λ < 1. Work in
the frame moving with the sphere. Let the walls of the tube have velocity −U , and assume
that the angular velocity of the sphere is negligible. The coordinates are chosen such that
the width of the narrow gap between the sphere and the tube can be approximated by

h(θ, x) = h0(θ) + x2/(2a), where h0 = ε(1 + λ cos θ)a.

Use scaling arguments to estimate the typical magnitudes of (a) the pressure
gradient, the pressure and the shear stress in the narrow gap and (b) the pressure gradient
and the shear stress ahead of and behind the sphere.

Show that in the gap

σxy
µ

∣∣∣
y=0

=
4U

h
+

6q

h2
, where q = − h3

12µ

∂p

∂x
− Uh

2
and y = a− r,

and find a similar expression for σxy on y = h. Explain carefully why q is approximately
independent of x.

By considering (ii) at O(ε−3/2), show that q = −2
3Uh0(θ). Deduce that the pressure

gradient far from the sphere is approximately

8µU(1− 4
3ε)/a

2.

[You may assume that if In ≡
∫ ∞

−∞

dξ

(1 + ξ2)n
then I1 = π, I2 =

π

2
and I3 =

3π

8
. You may

also assume that the volume flux in Poiseuille flow is (πa4/8µ)∂p/∂x.]

By considering (ii) at O(ε−1/2), show further that the leading-order pressure drop
across the sphere is √

2

ε

2µU

a

∫ 2π

0

dθ√
1 + λ cos θ

.

Show that

∫
σxy|y=h dx = 0 and comment on the significance of this result.
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