MATHEMATICAL TRIPOS Part III

Tuesday, 7 June, 2022 $\quad 1{:}30~\mathrm{pm}$ to $3{:}30~\mathrm{pm}$

PAPER 327

DISTRIBUTION THEORY AND APPLICATIONS

Before you begin please read these instructions carefully

Candidates have TWO HOURS to complete the written examination.

Attempt no more than **TWO** questions. There are **THREE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

SPECIAL REQUIREMENTS None

Cover sheet Treasury tag Script paper Rough paper

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1

- (a) Define the space of Schwartz functions $\mathcal{S}(\mathbf{R}^n)$ and the space of tempered distributions $\mathcal{S}'(\mathbf{R}^n)$, specifying the notion of convergence in each. Show that a linear form $u: \mathcal{S}(\mathbf{R}^n) \to \mathbf{C}$ belongs to $\mathcal{S}'(\mathbf{R}^n)$ iff $\langle u, \varphi_m \rangle \to 0$ for each sequence φ_m that tends to zero in $\mathcal{S}(\mathbf{R}^n)$.
- (b) Define the Fourier transform on $\mathcal{S}(\mathbf{R}^n)$ and $\mathcal{S}'(\mathbf{R}^n)$.
 - (i) For $\varphi \in \mathcal{S}(\mathbf{R}^n)$ define the *dilation by* t > 0 by $\delta_t \varphi(x) = \varphi(tx)$. Using a duality argument, show that this definition extends to $u \in \mathcal{S}'(\mathbf{R}^n)$ via

$$\langle \delta_t u, \varphi \rangle = t^{-n} \langle u, \delta_{1/t} \varphi \rangle \quad \forall \varphi \in \mathcal{S}(\mathbf{R}^n)$$

and verify that $\delta_t u \in \mathcal{S}'(\mathbf{R}^n)$.

- (ii) Call $u \in \mathcal{S}'(\mathbf{R}^n)$ homogeneous of degree σ if $\delta_t u = t^{\sigma} u$ for t > 0. Show that if $u \in \mathcal{S}'(\mathbf{R}^n)$ is homogeneous of degree σ then \hat{u} is also homogeneous and find its degree of homogeneity.
- (c) For $0 < \alpha < n$ consider $u_{\alpha} \in \mathcal{S}'(\mathbf{R}^n)$ defined by

$$\langle u_{\alpha}, \varphi \rangle = \int |x|^{-\alpha} \varphi(x) \, \mathrm{d}x.$$

Show that $\hat{u}_{\alpha}(\lambda) = c_{\alpha}|\lambda|^{-\beta}$ where β is a constant you should determine and

$$c_{\alpha} = \frac{2^{n-\alpha}\Gamma\left(\frac{n-\alpha}{2}\right)}{\Gamma\left(\frac{\alpha}{2}\right)}\pi^{n/2}$$

where $\Gamma(\omega) = \int_0^\infty t^{\omega-1} e^{-t} dt$ for $\omega > 0$.

You will find it useful to use the identity

$$|x|^{-\alpha} = \frac{1}{\Gamma\left(\frac{\alpha}{2}\right)} \int_0^\infty \tau^{\alpha/2} e^{-\tau |x|^2} \frac{\mathrm{d}\tau}{\tau}$$

and suitably interchange orders of integration.]

CAMBRIDGE

2 Let $X \subset \mathbf{R}^n$ be open. Define the spaces $\mathcal{E}(X)$ and $\mathcal{E}'(X)$, specifying the notion of convergence on each.

(a) Show that for $u \in \mathcal{E}'(\mathbf{R}^n)$, the Fourier transform $\hat{u} \in \mathcal{S}'(\mathbf{R}^n)$ can be identified with the smooth function $\lambda \mapsto \hat{u}(\lambda) = \langle u(x), e^{-i\lambda \cdot x} \rangle$ and show that there exists an $N \ge 0$ such that $|\hat{u}(\lambda)| \leq \langle \lambda \rangle^N$.

Hence prove that for each $v \in \mathcal{E}'(X)$, there exists a finite collection of continuous functions with compact support, $\{f_{\alpha}\}$, such that

$$v = \sum_{\alpha} \partial^{\alpha} f_{\alpha}$$
 in $\mathcal{E}'(X)$.

(b) Let $\delta_0 \in \mathcal{D}'(\mathbf{R})$ denote the Dirac delta supported at zero. Establish the following:

- (i) If $\rho \in \mathcal{D}(\mathbf{R})$ with $\rho(0) = 1$ then $\delta_0 = \rho \delta_0$;
- (ii) If H denotes the Heaviside function, then $\delta_0 = (xH)''$;
- (iii) If $\varphi \in \mathcal{D}(\mathbf{R})$ and $u \in \mathcal{D}'(\mathbf{R})$ then $\varphi u'' = \varphi'' u 2[\varphi' u]' + [\varphi u]''$.

Using parts (i)–(iii), find explicit examples of continuous functions with compact support, f_0, f_1, f_2 , such that

$$\delta_0 = f_0 + f_1' + f_2''$$
 in $\mathcal{D}'(\mathbf{R})$.

3

State and prove the Malgrange-Ehrenpries theorem. Your proof should involve the construction of an element of $\mathcal{D}'(\mathbf{R}^n)$ which depends on a suitable "Hörmander staircase".

Provide *explicit* Hörmander staircases for the following partial differential operators in two variables, justifying your answers:

(i)
$$\frac{\partial^2}{\partial x^2} - \frac{\partial^2}{\partial y^2}$$
; (ii) $\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$; (iii) $\frac{\partial}{\partial x} - \frac{\partial^2}{\partial y^2}$.

You are not required to compute the corresponding fundamental solutions.

END OF PAPER

Part III, Paper 327