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1 Generalised solutions
Let A : X → Y be a linear bounded operator and X ,Y Hilbert spaces. In this

exercise, we denote the range and null space of an operator as R(·) and N (·). You may
use results from the lectures as long as they are stated in full.

(a) State the range of the Moore-Penrose inverse of A and the Moore-Penrose
equations.

(b) Prove or falsify the following statements for A ∈ Cm×n with m > n and
B ∈ Cn×r. Here AH denotes the conjugate transpose of A (the matrix formed by
conjugating each element and taking the transpose). If there is any statement that is false,
give a sufficient condition on the ranks of A and/or B so that the statement becomes true.

(i) (A†)H = (AH)†,

(ii) (AHA)† = A†(A†)H ,

(iii) rank(A†A) = rank(A†) = tr(A†A),

(iv) (AB)† = B†A†.

(c) The space `2(R) consists of real-valued infinite sequences f=(f1, f2, ...) for which∑∞
j=1 f

2
j < ∞. It is a Hilbert space under the inner product 〈f, g〉`2 =

∑∞
j=1 fjgj and

induced norm ‖f‖`2 =
√∑∞

j=1 f
2
j .

(i) Prove that the diagonal operator D : `2 → `2 defined as [Df ]j = djfj with
dj ∈ R for j = 1, ... is bounded if and only if B = supj |dj | <∞.

(ii) Prove that, if the diagonal operator in (i) is bounded, then ‖D‖`2 = B.

(iii) Compute the Moore-Penrose inverse of D. Is D† continuous?

(iv) Consider D as defined in (i) where dj = 1/j for j = 1, .... Show that a
solution of Du = f , for f ∈ `2(R), might not exist. Show that if a solution
exists, it is unique.

(v) Prove that the solution of Du = f for D defined in (iv) is not stable with
respect to perturbations in f . To do this, prove or falsify the following
property: let Du∗ = f∗ and {un}n=1,.. be a sequence such that Dun = fn,
then un → u∗ if fn → f∗.
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2 Classical Regularization and Functionals
(a) Let X be a Banach space with topology τX . Assume f : X → R̄.

(i) Define sequential lower semi-continuity.

(ii) Prove that f(x) is a lower semi continuous function if and only if the set
Ω = {x ∈ X : f(x) 6 η} is closed.

(iii) Prove that X ′ ⊂ X is closed implies that the characteristic function χX ′ of
X ′ is lower semi continuous.

(b) Consider A ∈ L(X ,Y) with dense range R(A) ⊂ Y for X and Y Hilbert spaces.

(i) Assume that A∗A + αI is invertible. Derive a lower and an upper
bound for 〈f, (A∗A+ αI)f〉X and use them to prove that for all α > 0
‖(A∗A+ αI)−1‖| 6 1/α.

(ii) Prove that if {zn}n ⊂ R(A∗A+αI) is a Cauchy sequence then {un}n such
that (A∗A+αI)un = zn also form a Cauchy sequence with limit u ∈ X . A
sequence {zn}n is a Cauchy sequence in a metric d(·, ·) if for all real ε > 0
there exists N ∈ N such that d(zm, zn) < ε for all m,n > N.

(iii) Prove that A∗A+ αI is invertible. [Hint: You can use (ii) as a statement
and the fact that injective linear operators have a dense range.]

(iv) Using (i),(ii) and (iii) you have proven that for a given α∗ > 0, the solution
of (A∗A+ α∗I)u∗ = A∗f is uniquely determined. Prove that u∗ is also the
solution of the unconstrained variational problem

min
u∈X

φα∗(u) where φα∗(u) = ‖f −Au‖2Y + α∗‖u‖2X .

(c) We define the shrinkage operator as

ψλ(x) = arg min
z∈RN

gλ(z) gλ(z) =
1

2
‖z − x‖22 + λ‖z‖1 (1)

where gλ : RN → R. [Hint: You can use the expression of the subdifferential of the absolute
value without proving it.]

(i) Prove that the components of the shrinkage operator are given by

[ψλ(x)]i =





xi − λ for xi > λ,

0 for − λ 6 xi 6 λ,

xi + λ for xi < −λ.
(2)

(ii) Draw a plot of [ψλ(x)]i.
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