MATHEMATICAL TRIPOS Part III

Monday, 13 June, 2022 \quad 1:30pm to 3:30 pm

PAPER 326

INVERSE PROBLEMS

Before you begin please read these instructions carefully

Candidates have TWO HOURS to complete the written examination.

Attempt **BOTH** questions. There are **TWO** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

SPECIAL REQUIREMENTS None

Cover sheet Treasury tag Script paper Rough paper

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 Generalised solutions

Let $A : \mathcal{X} \to \mathcal{Y}$ be a linear bounded operator and \mathcal{X}, \mathcal{Y} Hilbert spaces. In this exercise, we denote the range and null space of an operator as $\mathcal{R}(\cdot)$ and $\mathcal{N}(\cdot)$. You may use results from the lectures as long as they are stated in full.

(a) State the range of the *Moore-Penrose inverse of* A and the *Moore-Penrose equations*.

(b) Prove or falsify the following statements for $A \in \mathbb{C}^{m \times n}$ with m > n and $B \in \mathbb{C}^{n \times r}$. Here A^H denotes the conjugate transpose of A (the matrix formed by conjugating each element and taking the transpose). If there is any statement that is false, give a sufficient condition on the ranks of A and/or B so that the statement becomes true.

- (i) $(A^{\dagger})^{H} = (A^{H})^{\dagger}$,
- (ii) $(A^H A)^{\dagger} = A^{\dagger} (A^{\dagger})^H$,
- (iii) $\operatorname{rank}(A^{\dagger}A) = \operatorname{rank}(A^{\dagger}) = \operatorname{tr}(A^{\dagger}A),$
- (iv) $(AB)^{\dagger} = B^{\dagger}A^{\dagger}$.

(c) The space $\ell^2(\mathbb{R})$ consists of real-valued infinite sequences $f = (f_1, f_2, ...)$ for which $\sum_{j=1}^{\infty} f_j^2 < \infty$. It is a Hilbert space under the inner product $\langle f, g \rangle_{\ell^2} = \sum_{j=1}^{\infty} f_j g_j$ and induced norm $\|f\|_{\ell^2} = \sqrt{\sum_{j=1}^{\infty} f_j^2}$.

- (i) Prove that the diagonal operator $D: \ell^2 \to \ell^2$ defined as $[Df]_j = d_j f_j$ with $d_j \in \mathbb{R}$ for j = 1, ... is bounded if and only if $B = \sup_j |d_j| < \infty$.
- (ii) Prove that, if the diagonal operator in (i) is bounded, then $||D||_{\ell^2} = B$.
- (iii) Compute the Moore-Penrose inverse of D. Is D^{\dagger} continuous?
- (iv) Consider D as defined in (i) where $d_j = 1/j$ for j = 1, ... Show that a solution of Du = f, for $f \in \ell^2(\mathbb{R})$, might not exist. Show that if a solution exists, it is unique.
- (v) Prove that the solution of Du = f for D defined in (iv) is not stable with respect to perturbations in f. To do this, prove or falsify the following property: let $Du^* = f^*$ and $\{u_n\}_{n=1,...}$ be a sequence such that $Du_n = f_n$, then $u_n \to u^*$ if $f_n \to f^*$.

2 Classical Regularization and Functionals

- (a) Let \mathcal{X} be a Banach space with topology $\tau_{\mathcal{X}}$. Assume $f: \mathcal{X} \to \mathbb{R}$.
 - (i) Define sequential lower semi-continuity.
 - (ii) Prove that f(x) is a lower semi continuous function if and only if the set $\Omega = \{x \in \mathcal{X} : f(x) \leq \eta\}$ is closed.
 - (iii) Prove that $\mathcal{X}' \subset \mathcal{X}$ is closed implies that the characteristic function $\chi_{\mathcal{X}'}$ of \mathcal{X}' is lower semi continuous.
- (b) Consider $A \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ with dense range $\mathcal{R}(A) \subset \mathcal{Y}$ for \mathcal{X} and \mathcal{Y} Hilbert spaces.
 - (i) Assume that $A^*A + \alpha I$ is invertible. Derive a lower and an upper bound for $\langle f, (A^*A + \alpha I)f \rangle_{\mathcal{X}}$ and use them to prove that for all $\alpha > 0$ $||(A^*A + \alpha I)^{-1}||| \leq 1/\alpha$.
 - (ii) Prove that if $\{z_n\}_n \subset \mathcal{R}(A^*A + \alpha I)$ is a Cauchy sequence then $\{u_n\}_n$ such that $(A^*A + \alpha I)u_n = z_n$ also form a Cauchy sequence with limit $u \in \mathcal{X}$. A sequence $\{z_n\}_n$ is a Cauchy sequence in a metric $d(\cdot, \cdot)$ if for all real $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that $d(z_m, z_n) < \epsilon$ for all m, n > N.
 - (iii) Prove that $A^*A + \alpha I$ is invertible. [Hint: You can use (ii) as a statement and the fact that injective linear operators have a dense range.]
 - (iv) Using (i),(ii) and (iii) you have proven that for a given $\alpha^* > 0$, the solution of $(A^*A + \alpha^*I)u^* = A^*f$ is uniquely determined. Prove that u^* is also the solution of the unconstrained variational problem

$$\min_{u \in \mathcal{X}} \phi_{\alpha^*}(u) \quad \text{where} \quad \phi_{\alpha^*}(u) = \|f - Au\|_{\mathcal{Y}}^2 + \alpha^* \|u\|_{\mathcal{X}}^2.$$

(c) We define the shrinkage operator as

$$\psi_{\lambda}(x) = \arg\min_{z \in \mathbb{R}^{N}} g_{\lambda}(z) \quad g_{\lambda}(z) = \frac{1}{2} \|z - x\|_{2}^{2} + \lambda \|z\|_{1}$$
(1)

where $g_{\lambda} : \mathbb{R}^N \to \mathbb{R}$. [*Hint: You can use the expression of the subdifferential of the absolute value without proving it.*]

(i) Prove that the components of the shrinkage operator are given by

$$[\psi_{\lambda}(x)]_{i} = \begin{cases} x_{i} - \lambda & \text{for } x_{i} > \lambda, \\ 0 & \text{for } -\lambda \leqslant x_{i} \leqslant \lambda, \\ x_{i} + \lambda & \text{for } x_{i} < -\lambda. \end{cases}$$
(2)

(ii) Draw a plot of $[\psi_{\lambda}(x)]_i$.

END OF PAPER

Part III, Paper 326