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1 Give equations defining the non-relativistic Ghirardi-Rimini-Weber (GRW) “spon-
taneous collapse” model for N distinguishable spin 0 particles, explaining carefully how
it modifies the Schrödinger equation. Using a sketch model, explain how, with suitable
parameter choices (which you should estimate), the GRW model predicts negligible de-
viations from the Schrödinger equation for an isolated microscopic system, but a swift
collapse corresponding to a specific measurement outcome when the system undergoes a
measurement-type interaction with a macroscopic apparatus.

Show that, if a single free particle of mass m undergoes a single GRW collapse,
the expectation values of 〈x〉, 〈p〉 and 〈x2〉 do not immediately change. Show that the
expectation value 〈p2〉 does immediately change. Explain what type of tests of the GRW
model this suggests.

2

A quantum system S comprises two subsystems A and B, whose degrees of freedom
are described by finite-dimensional Hilbert spaces HA and HB. Suppose that S is initially
in a pure state |Ψ〉AB. Explain what is meant by saying that |Ψ〉AB is entangled. Explain
carefully how to define the reduced density matrices for each subsystem.

Suppose that two physically separated observers, Alice and Bob, control subsystems
A and B respectively. Starting from the postulates of non-relativistic quantum mechanics,
show that any measurement Bob carries out on subsystem B does not alter the reduced
density matrix for subsystem A. Explain the implications for the relationship between
quantum theory and special relativity.

Now suppose that Alice has a hypothetical device that gives, on request, a classical
description of the quantum state of A, without altering that state. Explain how, if the
device operates within the standard framework of non-relativistic quantum mechanics,
Alice and Bob can use it to send superluminal signals.

Describe an alternative version of this device, defined in Minkowski space-time,
that would not allow superluminal signalling. Explain carefully the physical assumptions
underlying your definitions. Explain carefully why postulating the device does not lead
to any logical inconsistency with those assumptions. Explain also why, given those
assumptions, it is not possible to signal superluminally by any algorithm involving any
combination of these devices together with unitary evolutions and measurements.
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Bose et al. have proposed an experiment creating two separate quantum subsystems,
1 and 2, each of which is a spherical mass m ∼ 10−14kg in a superposition of two
distinct position states, L and R. Suppose that these systems are allowed to fall for time
t such that the R state of subsystem 1 and the L state of subsystem 2 are separated by
dRL = d ∼ 2 × 10−4m, while the other three separations are much larger, so that their
gravitational interactions are relatively negligible in the experiment. Explain carefully why,
if all interactions other than gravity are also negligible, a standard quantum treatment of
the evolution suggests that subsystems 1 and 2 should generally become entangled.

Explain what is meant by an entanglement witness. Show that the measure

W = |〈σ1x ⊗ σ2z〉+ 〈σ1y ⊗ σ2y〉|

discussed by Bose et al. is (up to multiplication and addition of constant factors) an
entanglement witness. Assuming that the Pauli matrices are defined in the |L〉, |R〉 basis
for each subsystem, so that for example σz|L〉 = |L〉, σz|R〉 = −|R〉, obtain a rough
estimate (to the nearest integer) of the value of W after 10s of free fall in the given
configuration.

[Newton’s gravitational constant G ∼ 6.674 × 10−11m3kg−1s−2; Planck’s constant
h ∼ 6.626× 10−34kgm2s−1; ~ = h

2π ∼ 1.054× 10−34kgm2s−1.]
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Let |ψ〉 be an entangled pure state of two qubits (which we will take to represent
spin-1/2 particles). Explain why |ψ〉 can be written in the form

|ψ〉 = c0| ↑〉1| ↓〉2 + c1| ↓〉1| ↑〉2 ,

where {| ↑〉j , | ↓〉j} form an orthonormal basis for qubit j and the ci are real and positive.

Let a,b be any two vectors in IR3. Show that the expected value of a measurement
of the operator a.σ ⊗ b.σ in the state |ψ〉 is

E(a,b) = 〈a.σ ⊗ b.σ〉ψ = 2c0c1(axbx + ayby)− azbz ,

where the Pauli matrices are defined in the above-defined orthonormal basis for their
respective qubit.

Consider the vectors a = (0, 0, 1),b = (sinβ, 0, cosβ),a′ = (−1, 0, 0),b′ =
(sinβ′, 0, cosβ′). Show that

|E(a,b)− E(a,b′)|+ |E(a′,b) + E(a′,b′)| = | cosβ − cosβ′|+ 2c0c1| sinβ + sinβ′| .

Hence show that there are pairs of measurement operators on the individual qubits whose
correlations cannot be reproduced by any separable state.

Explain briefly the theoretical implications for witnessing entanglement in a BMV
experiment, assuming that any relevant measurement is possible in practice and that
decoherence and non-gravitational forces can be neglected.
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