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1 (a) In a laboratory we are able to perform computational basis measurements
and the following set of unitaries: {H,S,CNOT, SWAP} on any qubit or a pair of
qubits. Show how we can implement the following one- and two-qubit measurements
(while retaining the full post-measurement state):

(i) Z, X

(ii) X ⊗X, Z ⊗X
(b) Consider P,Q ∈ Pn, where Pn is the Pauli group on n qubits and let |ψ〉 be an

eigenstate of P with eigenvalue λP ∈ {±1}. Let P and Q anti-commute.

(i) Show that measuring Q on |ψ〉 returns λQ = ±1, each with probability 1
2 .

(ii) Show that an operator V (λP , λQ) = 1√
2
(λPP + λQQ) is a unitary Clifford

operation. Furthermore, describe the subspace of Q where |ψ〉 is mapped onto.

(c)

(i) Describe the steps involved in a Pauli-based Computation on input state |α〉.
(ii) Let C be a non-adaptive Clifford circuit on n+ t qubit input state |0〉⊗n⊗|φ〉,

where |φ〉 is an arbitrary t-qubit state, followed by Z1, . . . Zn measurements where
Zi = I1 ⊗ · · · ⊗ Ii−1 ⊗ Z ⊗ Ii+1 ⊗ · · · ⊗ In+t. Show that C can be weakly simulated
by a non-adaptive Pauli-based Computation process P1, . . . , Ps with final Z1, . . . , Zn basis
measurement outputs, where Pi ∈ Pt and s 6 t.
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(i) Define a stabilizer state |ψ〉 and the stabilizer group G of |ψ〉.
(ii) Write down all Pauli operators that stabilize a) |001〉, b) |Φ+〉 ⊗ |+〉, where

|Φ+〉 = 1√
2
(|00〉+ |11〉), and |+〉 = 1√

2
(|0〉+ |1〉).

(iii) State the Gottesman-Knill Theorem. Write down the stabilizer tableau
(ignoring the signs) for |Ψin〉 = |+〉⊗3. Consider a sequence of gates applied to the input
state |Ψin〉 that results in |Ψout〉 = CNOT13(H2⊗H3)CNOT21|Ψin〉, where the subscript
indicates the qubit it acts on, and CNOTij has i-th qubit as control and j-th as target.
Compute the stabilizer tableau (ignoring the signs) for |Ψout〉.

(iv) Show that P = P1⊗· · ·⊗Pn, and Q = Q1⊗· · ·⊗Qn where Qi, Pi ∈ {I, X, Y, Z}
either commute or anti-commute. When P and Q anticommute, determine the subspace
that is stabilized by both of them.

(v) Define the stabilizer subspace VG = {|ψ〉 : P |ψ〉 = |ψ〉, ∀P ∈G}, where G is
a commuting subgroup of the Pauli group. Let ΠG = 1

|G|
∑

P∈G P . Show that ΠG is

a projector onto VG. Consider the generators of G: 〈g1, . . . , gl〉. Show that ΠG can be
expressed as ΠG =

∏l
i=1

1
2(I + gi).
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3 (a) Let H be an n-qubit 2-local Hamiltonian with all of its m = poly(n) terms
commuting. Suppose we can produce a state |Ψ〉 which is an eigenstate of H with real
eigenvalue λ ∈ (0, 1).

(i) Describe an algorithm to implement U(t) = e−iHt with accuracy ε ∈ (0, 1) on
any given input state |α〉 for t > 0, clearly stating any results that you use. Show that
|Ψ〉 is an eigenstate of U(t) and find its eigenvalue.

(ii) Assume U(t) can be implemented exactly and all functions of its eigenvalues
and their values mod 2π can be represented using at most N binary digits. Using the
Phase Estimation algorithm show how to determine λt mod 2π (ignoring the issues of
accuracy).

(iii) Consider a 2-local Hamiltonian H = 5X ⊗X ⊗ I− 4Z ⊗ I⊗ Z. What is the
smallest value of k for which H4 is k-local?

(b) Consider an undirected graph G = (V,E) on |V | = n vertices. Each edge has
weight wi,j = wj,i, wi,j = 1 for (i, j) ∈ E, wi,j = 0 if (i, j) /∈ E. A cut in G is a partition of
the set V = S1 ∪S2 into two disjoint subsets S1, S2. With each vertex vi ∈ V we associate
a variable xi = 1 if xi ∈ S1, and xi = 0 if xi ∈ S2. The cost of the cut is the sum of
weights of edges that connect vertices in the two different subsets, crossing the cut. Define

the cost function C(x1, . . . , xn) =
∑|V |

i,j=1wijxi(1− xj).
(i) Consider an undirected graph G = (V,E) with V = {v1, v2, v3, v4, v5},

E = {(1, 5), (2, 3), (2, 5), (3, 5), (4, 5)}. Find a partition of V into two subsets that
maximizes C(x1, . . . x5).

(ii) Consider a Hamiltonian H = −C(x̂1, . . . , x̂5), where xi is replaced by
x̂i = 1

2(I − Zi) and 1 is replaced by I. Express H in terms of qubit projectors
P0 = |0〉〈0|, P1 = |1〉〈1|. Assume that the smallest eigenvalue of H is bounded as
|λmin| 6 4. Using (i) or otherwise, find the ground state |ψ〉 ∈ (C)⊗5 of H.
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(a)

(i) Define the Quantum Fourier Transform over a finite abelian group G.

(ii) Recall that an n-qubit state |ψ〉 is a product state if it can be represented as
|α1〉⊗ · · ·⊗ |αn〉, where each |αi〉 is a 1-qubit state. Consider a state |φ〉 = 1

T

∑2n−1
y=0 zy|y〉,

where z ∈ C, z2n = 1, T is a normalization constant. Show that |φ〉 is a product state.

(b)

(i) State the Hidden Subgroup Problem (HSP).

(ii) Suppose we are given a quantum oracle for a function f : {0, 1}n → {0, 1}n
such that f(x) = f(y) if and only if x ⊕ y = t, x, y ∈ {0, 1}n,t ∈ {0n, p}, and p ∈ {0, 1}n
is fixed. The problem is to determine p. Show that this problem can be reduced to the
HSP.

(iii) Describe a quantum algorithm that solves the HSP in (ii), clearly stating any
relevant theorems that you use.
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