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1 Let U ∼ p(u), u ∈ J , where J is a finite alphabet, denote an i.i.d. classical
information source.

[For this question you can assume that for all ε > 0, P[T
(n)
ε ]→ 1 as n→∞, where

T
(n)
ε is the ε-typical set as defined in the lecture. You should not assume any other result

from the lecture for this question.]

(a) Explain what is meant by a reliable compression-decompression scheme of rate R
for the source U . Show that if R > H(U) such a scheme exists.

(b) Let a memoryless quantum information source be given by the density matrix
π, acting on a Hilbert space H. Explain what is meant by a reliable quantum
compression-decompression scheme of rate R for the source π. Show that if
R > S(π) such a scheme exists, where S(π) is the von Neumann entropy of π.

(c) Define the sets of sequences Cn(r) := { (u1, . . . , un) ∈ Jn | p(u1, . . . un) > 2−nr }.
Show that, instead of using the sets of typical sequences, the result of a) can also
be established using the Cn(r) for a suitably chosen r.
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Let Λ be a linear map B(H)→ B(H), where H denotes a finite-dimensional Hilbert
space.

(a) State what is meant by Λ being completely positive. Define the Choi-matrix, J(Λ),
of Λ. Show necessary and sufficient conditions on the Choi matrix for Λ to be
completely positive. [Clearly state any result from the lecture you are using.]

(b) Show that if Λ can be written as

Λ(ρ) =
∑

k

AkρA
†
k (1)

then it is completely positive, where Ak are linear operators acting on the Hilbert
space H. Show a necessary and sufficient condition on the operators Ak for Λ to be
trace preserving.

(c) Let {|yi〉}di=1 be an orthonormal basis of H. Show that the channel

Y : B(H)→ B(H) Y(ρ) =
∑

i

|yi〉〈yi| 〈yi|ρ|yi〉 (2)

is trace preserving and completely positive. Explain why this channel can be called
a measure-and-prepare channel. Show that S(Y(ρ)) is the Shannon entropy of the
measurement outcome probabilities. Show that

D(ρ‖Y(ρ)) = S(Y(ρ))− S(ρ) . (3)

(d) Let {|zi〉}di=1 be another orthonormal basis of H and define similarly

Z : B(H)→ B(H) Z(ρ) =
∑

i

|zi〉〈zi| 〈zi|ρ|zi〉 . (4)

Evaluate the expression D(Z(ρ)‖Z(Y(ρ))) to show that

S(Y(ρ)) + S(Z(ρ)) > − log

(
max
i,j
| 〈yi|zj〉 |2

)
+ S(ρ) . (5)
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(a) Let {px, ρxB} and {qx, σxB} be two ensembles of quantum states with the same (finite)
number of elements. We define the states

ρXB =
∑

x

px |x〉〈x|X ⊗ ρxB (1)

σXB =
∑

x

qx |x〉〈x|X ⊗ σxB . (2)

Show that
D(ρXB‖σXB) =

∑

x

pxD(ρxB‖σxB) +D(p‖q) , (3)

where p = {px} and q = {qx}, Conclude that

S(ρXB) =
∑

x

pxS(ρxB) +H(p) , (4)

where H(p) denotes the Shannon entropy of the probability distribution p. [You
can use the fact that the logarithm of a block-diagonal matrix is the block-
diagonal matrix consisting of the logarithms of the individual blocks (formally:
log(A⊕B) = log(A)⊕ log(B)).]

(b) State what is meant by (i) the data-processing inequality for the quantum relative
entropy, (ii) joint convexity of the quantum relative entropy, and (iii) the strong
subadditivity inequality of the von Neumann entropy. Show that the data-processing
inequality implies both strong subadditivity and joint convexity. [You may assume
that the partial trace is a CPTP map.]

(c) State and prove the Holevo bound.
[Hint: If you wish, you can use the fact that for any POVM {Λx}mx=1 the channel

Λ : B(H)→ B(Cm) ρ 7→
∑

x

|x〉〈x|Tr(ρΛx) (5)

is CPTP, together with the data processing inequality.]

(d) Let Λ be a quantum channel. Consider the quantity

χ∗(Λ) := max
{px,ρx}

χ({px,Λ(ρx)}) (6)

where χ is the Holevo χ quantity. Explain the operational meaning of this quantity
and show that the maximization can be restricted to ensembles of pure states [clearly
state any result from the lecture you are using].
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4 Let H be a Hilbert space and ρ, σ ∈ D(H) be two density matrices.

(a) Show that the trace distance is monotonous under quantum channels, i.e. for any
linear CPTP map

Λ : B(H)→ B(K) (1)

it holds that
1

2
‖Λ(ρ)− Λ(σ)‖1 6 1

2
‖ρ− σ‖1 . (2)

[Clearly state any result from the lecture you are using and justify your steps.]

(b) Show that there exists a positive operator 0 6 P 6 1 such that

‖ρ− σ‖1 = |Tr(P (ρ− σ))|+ |Tr((1− P )(ρ− σ))| . (3)

(c) Show that for any POVM {Λk}mk=1, and any orthonormal basis {|k〉}mk=1 of Cm, the
channel

Λ : B(H)→ B(Cm) Λ(ρ) =
m∑

k=1

|k〉〈k|Tr(Λkρ) (4)

is CPTP. [Hint: Find a set of Kraus operators to show complete positivity.]

(d) Show that

‖ρ− σ‖1 = max
{Λk} POVM

∑

k

|Tr(Λkρ)− Tr(Λkσ)| (5)

where the maximization is over all POVMs {Λk} (with arbitrarily many elements).

(e) The fidelity of two quantum states is defined as

F (ρ, σ) = Tr

[√√
ρσ
√
ρ

]
. (6)

It can also be expressed as an minimization over all POVMs:

F (ρ, σ) = min
{Λk} POVM

∑

k

√
Tr(Λkρ) Tr(Λkσ) . (7)

Use this to show that
1

2
‖ρ− σ‖1 > 1− F (ρ, σ) (8)

[Hint: Use that |p− q| > (
√
p−√q)2 for all p, q > 0.]
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(a) Show that for any pure bipartite state ρAB = |ψAB〉〈ψAB|,

S(ρA) = S(ρB) . (1)

Consider a channel Λ : B(HQ)→ B(HQ) with associated Stinespring isometry

U : HQ → HQ ⊗HE Λ(ρ) = TrE(UρU †) . (2)

Let ρ ∈ D(HQ) be an arbitrary input state and |φRQ〉 be a purification of ρ. We define
the pure state

|ψRQE〉 := (1R ⊗ U) |φRQ〉 (3)

and the associated density matrix

σRQE := |ψRQE〉〈ψRQE | . (4)

(b) State the definition of Ic(Λ, ρ), the coherent information of a channel with respect
to the input state ρ.

(c) Show that there always exists an input state ρ such that

Ic(Λ, ρ) = 0 . (5)

(d) Prove the following relation

Ic(Λ, ρ) =
1

2
(I(R : Q)− I(R : E)) (6)

where the mutual informations on the right-hand side are with respect to the state
σRQE .

(e) The channel Λ is called anti-degradable if there exists a linear CPTP map N :
B(HE) → B(HQ) such that for all input states ρ ∈ D(HQ) with a purification
|φRQ〉 and associated state σRQE (as defined through (3) and (4)) it holds that
(idR ⊗N )(σRE) = σRQ. Show that if Λ is anti-degradable then for any ρ ∈ D(HQ)

Ic(Λ, ρ) 6 0 (7)

and hence show that then

Q(1)(Λ) = max
ρ
Ic(Λ, ρ) = 0 . (8)

[QUESTION CONTINUES ON THE NEXT PAGE]

Part III, Paper 323



7

(f) In its most general form, the no-cloning theorem when applied to pure states says
that there does not exist any quantum channel M such that for all pure states ρ

M(ρ) = ρ⊗ ρ . (1)

We say that a quantum channel Λ can be used to transmit quantum information
perfectly over one use if there exists an encoding map E , and a decoding map D,
such that D ◦ Λ ◦ E = id, where id denotes the identity channel.

Prove that if an anti-degradable channel could be used to transmit quantum
information perfectly over one use, then the above statement of the no-cloning
theorem would be violated.

Hint: The following two facts might be helpful:

1. If Λ1 : B(HA) → B(HA′) and Λ2 : B(HB) → B(HB′) are two quantum
channels, then TrB′((Λ1 ⊗ Λ2)(ωAB)) = Λ1(ωA) for any bipartite density
matrix ωAB.

2. For any bipartite density matrix ωAB, if ωA = TrB(ωAB) is pure, then
ωAB = ωA ⊗ ωB.

END OF PAPER
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