MATHEMATICAL TRIPOS Part III

Thursday, 2 June, 2022 $\quad 1:30~\mathrm{pm}$ to $4:30~\mathrm{pm}$

PAPER 323

QUANTUM INFORMATION THEORY

Before you begin please read these instructions carefully

Candidates have THREE HOURS to complete the written examination.

Attempt no more than **FOUR** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

SPECIAL REQUIREMENTS None

Cover sheet Treasury tag Script paper Rough paper

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 Let $U \sim p(u), u \in J$, where J is a finite alphabet, denote an i.i.d. classical information source.

[For this question you can assume that for all $\varepsilon > 0$, $\mathbb{P}[T_{\varepsilon}^{(n)}] \to 1$ as $n \to \infty$, where $T_{\varepsilon}^{(n)}$ is the ε -typical set as defined in the lecture. You should not assume any other result from the lecture for this question.]

- (a) Explain what is meant by a reliable compression-decompression scheme of rate R for the source U. Show that if R > H(U) such a scheme exists.
- (b) Let a memoryless quantum information source be given by the density matrix π , acting on a Hilbert space \mathcal{H} . Explain what is meant by a *reliable quantum* compression-decompression scheme of rate R for the source π . Show that if $R > S(\pi)$ such a scheme exists, where $S(\pi)$ is the von Neumann entropy of π .
- (c) Define the sets of sequences $C_n(r) := \{ (u_1, \ldots, u_n) \in J^n \mid p(u_1, \ldots, u_n) \ge 2^{-nr} \}$. Show that, instead of using the sets of typical sequences, the result of a) can also be established using the $C_n(r)$ for a suitably chosen r.

 $\mathbf{2}$

Let Λ be a linear map $\mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{H})$, where \mathcal{H} denotes a finite-dimensional Hilbert space.

- (a) State what is meant by Λ being *completely positive*. Define the *Choi-matrix*, $J(\Lambda)$, of Λ . Show necessary and sufficient conditions on the Choi matrix for Λ to be completely positive. [Clearly state any result from the lecture you are using.]
- (b) Show that if Λ can be written as

$$\Lambda(\rho) = \sum_{k} A_k \rho A_k^{\dagger} \tag{1}$$

then it is completely positive, where A_k are linear operators acting on the Hilbert space \mathcal{H} . Show a necessary and sufficient condition on the operators A_k for Λ to be trace preserving.

(c) Let $\{|y_i\rangle\}_{i=1}^d$ be an orthonormal basis of \mathcal{H} . Show that the channel

$$\mathcal{Y} : \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{H}) \qquad \mathcal{Y}(\rho) = \sum_{i} |y_i\rangle \langle y_i| \langle y_i|\rho|y_i\rangle$$
(2)

is trace preserving and completely positive. Explain why this channel can be called a *measure-and-prepare channel*. Show that $S(\mathcal{Y}(\rho))$ is the Shannon entropy of the measurement outcome probabilities. Show that

$$D(\rho \| \mathcal{Y}(\rho)) = S(\mathcal{Y}(\rho)) - S(\rho).$$
(3)

(d) Let $\{|z_i\rangle\}_{i=1}^d$ be another orthonormal basis of \mathcal{H} and define similarly

$$\mathcal{Z}: \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{H}) \qquad \mathcal{Z}(\rho) = \sum_{i} |z_i\rangle \langle z_i| \langle z_i|\rho|z_i\rangle .$$
 (4)

Evaluate the expression $D(\mathcal{Z}(\rho) \| \mathcal{Z}(\mathcal{Y}(\rho)))$ to show that

$$S(\mathcal{Y}(\rho)) + S(\mathcal{Z}(\rho)) \ge -\log\left(\max_{i,j} |\langle y_i | z_j \rangle|^2\right) + S(\rho).$$
(5)

- 3
- (a) Let $\{p_x, \rho_B^x\}$ and $\{q_x, \sigma_B^x\}$ be two ensembles of quantum states with the same (finite) number of elements. We define the states

$$\rho_{XB} = \sum_{x} p_x \left| x \right\rangle \!\! \left\langle x \right|_X \otimes \rho_B^x \tag{1}$$

$$\sigma_{XB} = \sum_{x} q_x |x\rangle \langle x|_X \otimes \sigma_B^x \,. \tag{2}$$

Show that

$$D(\rho_{XB} \| \sigma_{XB}) = \sum_{x} p_x D(\rho_B^x \| \sigma_B^x) + D(\underline{p} \| \underline{q}), \qquad (3)$$

where $\underline{p} = \{p_x\}$ and $\underline{q} = \{q_x\}$, Conclude that

$$S(\rho_{XB}) = \sum_{x} p_x S(\rho_B^x) + H(\underline{p}), \qquad (4)$$

where $H(\underline{p})$ denotes the Shannon entropy of the probability distribution \underline{p} . [You can use the fact that the logarithm of a block-diagonal matrix is the block-diagonal matrix consisting of the logarithms of the individual blocks (formally: $\log(A \oplus B) = \log(A) \oplus \log(B)$).]

- (b) State what is meant by (i) the data-processing inequality for the quantum relative entropy, (ii) joint convexity of the quantum relative entropy, and (iii) the strong subadditivity inequality of the von Neumann entropy. Show that the data-processing inequality implies both strong subadditivity and joint convexity. [You may assume that the partial trace is a CPTP map.]
- (c) State and prove the Holevo bound. [Hint: If you wish, you can use the fact that for any POVM $\{\Lambda_x\}_{x=1}^m$ the channel

$$\Lambda: \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathbb{C}^m) \qquad \rho \mapsto \sum_x |x\rangle\!\langle x| \operatorname{Tr}(\rho\Lambda_x) \tag{5}$$

is CPTP, together with the data processing inequality.]

(d) Let Λ be a quantum channel. Consider the quantity

$$\chi^*(\Lambda) \coloneqq \max_{\{p_x, \rho_x\}} \chi(\{p_x, \Lambda(\rho_x)\})$$
(6)

where χ is the Holevo χ quantity. Explain the operational meaning of this quantity and show that the maximization can be restricted to ensembles of pure states [clearly state any result from the lecture you are using].

- 4 Let \mathcal{H} be a Hilbert space and $\rho, \sigma \in \mathcal{D}(\mathcal{H})$ be two density matrices.
 - (a) Show that the trace distance is monotonous under quantum channels, i.e. for any linear CPTP map

$$\Lambda: \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{K}) \tag{1}$$

it holds that

$$\frac{1}{2} \|\Lambda(\rho) - \Lambda(\sigma)\|_1 \leqslant \frac{1}{2} \|\rho - \sigma\|_1.$$
(2)

[Clearly state any result from the lecture you are using and justify your steps.]

(b) Show that there exists a positive operator $0 \leq P \leq 1$ such that

$$\|\rho - \sigma\|_{1} = |\operatorname{Tr}(P(\rho - \sigma))| + |\operatorname{Tr}((\mathbb{1} - P)(\rho - \sigma))|.$$
(3)

(c) Show that for any POVM $\{\Lambda_k\}_{k=1}^m$, and any orthonormal basis $\{|k\rangle\}_{k=1}^m$ of \mathbb{C}^m , the channel

$$\Lambda : \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathbb{C}^m) \qquad \Lambda(\rho) = \sum_{k=1}^m |k\rangle \langle k| \operatorname{Tr}(\Lambda_k \rho) \tag{4}$$

is CPTP. [Hint: Find a set of Kraus operators to show complete positivity.]

(d) Show that

$$\|\rho - \sigma\|_{1} = \max_{\{\Lambda_{k}\} \text{ POVM}} \sum_{k} |\operatorname{Tr}(\Lambda_{k}\rho) - \operatorname{Tr}(\Lambda_{k}\sigma)|$$
(5)

where the maximization is over all POVMs $\{\Lambda_k\}$ (with arbitrarily many elements).

(e) The fidelity of two quantum states is defined as

$$F(\rho,\sigma) = \operatorname{Tr}\left[\sqrt{\sqrt{\rho}\sigma\sqrt{\rho}}\right].$$
(6)

It can also be expressed as an minimization over all POVMs:

$$F(\rho,\sigma) = \min_{\{\Lambda_k\} \text{ POVM}} \sum_k \sqrt{\operatorname{Tr}(\Lambda_k \rho) \operatorname{Tr}(\Lambda_k \sigma)} \,.$$
(7)

Use this to show that

$$\frac{1}{2} \|\rho - \sigma\|_1 \ge 1 - F(\rho, \sigma) \tag{8}$$

[Hint: Use that $|p-q| \ge (\sqrt{p} - \sqrt{q})^2$ for all $p, q \ge 0$.]

Part III, Paper 323

 $\mathbf{5}$

(a) Show that for any pure bipartite state $\rho_{AB} = |\psi_{AB}\rangle\langle\psi_{AB}|$,

$$S(\rho_A) = S(\rho_B). \tag{1}$$

Consider a channel $\Lambda : \mathcal{B}(\mathcal{H}_Q) \to \mathcal{B}(\mathcal{H}_Q)$ with associated Stinespring isometry

$$U: \mathcal{H}_Q \to \mathcal{H}_Q \otimes \mathcal{H}_E \qquad \Lambda(\rho) = \operatorname{Tr}_E(U\rho U^{\dagger}).$$
 (2)

Let $\rho \in \mathcal{D}(H_Q)$ be an arbitrary input state and $|\phi_{RQ}\rangle$ be a purification of ρ . We define the pure state

$$|\psi_{RQE}\rangle \coloneqq (\mathbb{1}_R \otimes U) |\phi_{RQ}\rangle \tag{3}$$

and the associated density matrix

$$\sigma_{RQE} \coloneqq |\psi_{RQE}\rangle\!\langle\psi_{RQE}| \ . \tag{4}$$

- (b) State the definition of $I_c(\Lambda, \rho)$, the coherent information of a channel with respect to the input state ρ .
- (c) Show that there always exists an input state ρ such that

$$I_c(\Lambda, \rho) = 0.$$
⁽⁵⁾

(d) Prove the following relation

$$I_{c}(\Lambda, \rho) = \frac{1}{2} (I(R:Q) - I(R:E))$$
(6)

where the mutual informations on the right-hand side are with respect to the state σ_{RQE} .

(e) The channel Λ is called *anti-degradable* if there exists a linear CPTP map \mathcal{N} : $\mathcal{B}(\mathcal{H}_E) \to \mathcal{B}(\mathcal{H}_Q)$ such that for all input states $\rho \in \mathcal{D}(H_Q)$ with a purification $|\phi_{RQ}\rangle$ and associated state σ_{RQE} (as defined through (3) and (4)) it holds that $(\mathrm{id}_R \otimes \mathcal{N})(\sigma_{RE}) = \sigma_{RQ}$. Show that if Λ is anti-degradable then for any $\rho \in \mathcal{D}(H_Q)$

$$I_c(\Lambda, \rho) \leqslant 0 \tag{7}$$

and hence show that then

$$Q^{(1)}(\Lambda) = \max_{\rho} I_c(\Lambda, \rho) = 0.$$
(8)

[QUESTION CONTINUES ON THE NEXT PAGE]

Part III, Paper 323

(f) In its most general form, the no-cloning theorem when applied to pure states says that there does not exist any quantum channel \mathcal{M} such that for all pure states ρ

$$\mathcal{M}(\rho) = \rho \otimes \rho \,. \tag{1}$$

We say that a quantum channel Λ can be used to transmit quantum information perfectly over one use if there exists an encoding map \mathcal{E} , and a decoding map \mathcal{D} , such that $\mathcal{D} \circ \Lambda \circ \mathcal{E} = id$, where id denotes the identity channel.

Prove that if an anti-degradable channel could be used to transmit quantum information perfectly over one use, then the above statement of the no-cloning theorem would be violated.

Hint: The following two facts might be helpful:

- 1. If $\Lambda_1 : \mathcal{B}(\mathcal{H}_A) \to \mathcal{B}(\mathcal{H}_{A'})$ and $\Lambda_2 : \mathcal{B}(\mathcal{H}_B) \to \mathcal{B}(\mathcal{H}_{B'})$ are two quantum channels, then $\operatorname{Tr}_{B'}((\Lambda_1 \otimes \Lambda_2)(\omega_{AB})) = \Lambda_1(\omega_A)$ for any bipartite density matrix ω_{AB} .
- 2. For any bipartite density matrix ω_{AB} , if $\omega_A = \text{Tr}_B(\omega_{AB})$ is pure, then $\omega_{AB} = \omega_A \otimes \omega_B$.

END OF PAPER