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1 The vertical structure of self-gravitating discs
(a) In a Keplerian disc the Toomre parameter is Q = Ωcs/(πGΣ), where cs is the

sound speed and the other symbols take their usual meanings. Describe the different
physical processes competing over the gravitational stability of the disc and how they
are represented in the Toomre parameter. If gravitational instability leads to a turbulent
state, why might you expect this state to settle on Q ∼ 1?

(b) The equations determining the vertical structure of a thin Keplerian self-
gravitating alpha disc are

dP

dz
= −ρΩ2z − ρdΦd

dz
,

d2Φd

dz2
= 4πGρ,

dF

dz
=

9

4
αPΩ,

dT

dz
= − 3

16

κρ

σT 3
F,

where Φd is the disc’s gravitational potential, κ is the opacity, and the other symbols
take their usual meanings. Explain what each equation represents. Adopt the scalings
P/ρ ∼ c2s and Σ ∼ ρH, where H is the disc’s semi-thickness, and show that if all the terms
in vertical hydrostatic equilibrium are of the same order then Q ∼ 1.

(i) Assume that the disc is composed of perfect gas, i.e. P = (kρT )/(µmmp), and that
κ is a constant.

By taking an order of magnitude approach to the above equations and enforcing
Q ∼ 1, show that α is not a free parameter but scales as

α ∼ σ

κ

(
µmmpΣ

k

)4

G6Ω−7,

and hence ν̄ ∝ r15Σ6, where ν̄ is the mean turbulent viscosity.

(ii) Suppose the gas can be described by a polytropic equation of state, i.e. P = Kρ1+1/n,
where K is a constant and n is the polytropic index. Set c2s = dP/dρ, and denote by
c0 and ρ0 the midplane sound speed and midplane density.

The dimensionless pseudo-enthalpy w is defined so that dw = (c20ρ)−1dP . Show that
ρ = ρ0n

−nwn, and that w satisfies

d2w

dζ2
+

4

nnQ0
wn = −1,

where ζ = (Ω/c0)z, Q0 = Ωc0/(πGΣ), and Σ = ρ0(c0/Ω), with boundary conditions
w(0) = n and w′(0) = 0. For the special case n = 1, solve the differential equation
and find H as a function of Q0, K, ρ0, and Ω.

Part III, Paper 321



3

2 Spreading of a narrow planetary ring
The equations of a razor-thin compressible planetary ring in the shearing sheet are

∂Σ

∂t
+ u · ∇Σ = −Σ∇ · u,

∂u

∂t
+ u · ∇u = −2Ωez × u−∇Φt −

1

Σ
∇P +

1

Σ
∇ ·T,

where Φt = −(3/2)Ω2x2 and the viscous stress tensor T is given by

Tij = Σν

[
∂ui
∂xj

+
∂uj
∂xi
− 2

3
(∇ · u)δij

]
.

(a) Suppose Σ = Σ(x, t), ux = ux(x, t), P = P (x, t), and (approximately)
uy = −(3/2)Ωx. By first finding an expression for ux in terms of Σ, derive the diffusion
equation in the shearing sheet:

∂Σ

∂t
= 3

∂2(νΣ)

∂x2
. (†)

Explain what kind of evolution this equation approximately describes and what kinds of
behaviour it cannot describe.

(b) Assume that ν = ν(Σ). Starting from (†), conduct a linear perturbation analysis
of the homogeneous state Σ = Σ0 and show that the planetary ring is unstable to the
viscous instability when d(νΣ)/dΣ < 0. In what way will the ring evolve under the action
of this instability?

(c) Now assume that ν = AΣ2, where A is a dimensional constant, and adopt the
following form for Σ, describing a spreading narrow ring,

Σ =

{
σ(t)

√
1− x2/w(t)2, |x| < w,

0, |x| > w,

where σ and w are functions of time, yet to be determined.

Find the form of ux inside the ring. Hence derive the evolution equation ẇ =
9Aσ2/w.

By direct substitution into (†), show that σ̇ = −σẇ/w, and hence that σw is a
constant. Demonstrate that conservation of total mass in the ring is ensured if σw is a
constant.

Given that σ = σ0 and w = w0 at t = 0, find expressions for w and σ in the form
w = w0f(t), σ = σ0g(t), where f and g are functions to be determined. Show that at
large times w ∝ t1/4.
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3 The stratified incompressible shearing sheet
The incompressible shearing sheet can be extended so as to account for vertical

buoyancy. In a Keplerian disc, the governing equations are then

∂tu + u · ∇u = − 1

ρ0
∇P − 2Ωez × u + 3Ω2xex −N2θez,

∂tθ + u · ∇θ = uz, ∇ · u = 0,

where θ is the buoyancy variable (with units of length), N2 is the squared buoyancy
frequency, and other symbols take their usual meanings. Both N2 and ρ0 are constants.

(a) Briefly describe the rationale and main approximations of the (standard) incompress-
ible shearing sheet. Which kinds of flow can it represent?

(b) The total specific energy is E = 1
2(|u|2 +N2θ2). Show that E obeys the conservation

law ∂tE +∇ · F = 0, where F is an energy flux, the form of which you need to find.

[You may need the vector identity: 1
2∇|u|2 = u · ∇u + u× (∇× u).]

(c) Verify that u = u0 = −(3/2)Ωxey, P = P0 (a constant), and θ = 0 is a solution to
the governing equations.

Perturb this equilibrium with disturbances ∝ eik·x−iωt, where k = exkx + ezkz, and
ω is a wave frequency. Write down the perturbation equations, showing that all the
nonlinear terms are precisely zero.

Derive the dispersion relation

ω2 =
k2z
k2

Ω2 +
k2x
k2
N2,

where k2 = k2x + k2z .

The group velocity c is defined so that ci = ∂ω/∂ki. If N2 = 0, show that
c = ±k−3 [k× (Ω× k)]. What is c’s relative orientation to the phase velocity? How
might a packet of inertial waves propagate?

If N2 > 0, consider the two limits kx/kz → 0 and kz/kx → 0. Which kinds of
motion and what physical processes dominate in each limit and why? How might you
characterise oscillations with intermediate kx/kz?

If N2 < 0, derive an instability criterion for the onset of convection. Why are only
some modes unstable?
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