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1 In this question
(
H, ‖ · ‖

)
is a Banach space and {U(t)}t>0 is a C0 semigroup of

operators in B(H) which verifies ‖U(t)u‖ 6 Meωt‖u‖ ∀u ∈ H. Let G(M,ω) be the set of
generators of such semigroups.

(a) Define the generator A ∈ G(M,ω) of the semigroup U and write down, without
justification, an element of Dom (A). Show that A is closed and its resolvent set
ρ(A) ⊃ {z : Re (z) > ω}.

(b) Prove that n!(z−A)−(n+1) u =
∫∞
0 tne−tzU(t)u dt for n ∈ N∪{0},Re (z) > ω, and

that for λ > ω

‖(λ−A)−(n+1)u‖ 6M(λ− ω)−n+1‖u‖ for all u ∈ H .

(c) Show that the domain Dom (A) endowed with the norm ‖u‖Y = ‖u‖ + ‖Au‖ is a
Banach space Y .

(d) Show that the subspace Y = Dom (A) is invariant under {U(t)}t>0, and that
Ũ(t) = U(t)

∣∣
Y

, the restriction of the semigroup {U(t)}t>0 to Y , is itself a C0

semigroup on Y whose generator is the restriction of A to

Dom (A2) = {u ∈ Dom (A) : Au ∈ Dom (A)} .

Obtain a bound for ‖Ũ(t)y‖Y in terms of M,ω, t and ‖y‖Y .

(e) Show that Û(t) = e−ωtU(t) defines a C0 semigroup of operators in B(H) which
verifies ‖Û(t)u‖ 6 M‖u‖ ∀u ∈ H and that Â = A − ω is its generator (so that
Â ∈ G(M, 0).) State the Hille-Yosida theorem for the case of generators in G(M, 0).

(f) Explain the notion of solution operator for an evolution equation ∂tu = A(t)u. State
a theorem on the existence of a solution operator {U(t, s)}06s6t6T on finite time
intervals [0, T ] for the equation ∂tu = A(t)u, when A(t) ∈ G(M, 0) for each t, giving
conditions on {A(t)}06t6T and the resulting properties of {U(t, s)}06s6t6T . Write
down operators which are a finite product

N∏

j=1

exp[sjA(tj)] (for appropriate {sj} and {tj})

which converge to U(t, s) as N →∞, state the type of convergence, and prove that
U(t, s)u is differentiable with respect to s for u ∈ D.

(g) Given φ ∈ C1(R;R), consider the operator A(t) = ∂3x + φ(t)∂x, regarded as an
unbounded operator on L2(R, dx) with domain

Dom (A) = H3(R) = {u ∈ L2 : (1 + ξ2)3/2û(ξ) ∈ L2(R, dξ)} ,

where û is the Fourier transform. Show that this satisfies the conditions in (f),
and deduce the existence of a solution operator {U(t, s)}06s6t6T for the equation
∂tu = A(t)u for any positive T <∞.

[QUESTION CONTINUES ON THE NEXT PAGE]
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(h) Continuing from the previous part, prove that given u0 ∈ L2(R) there is a unique
u ∈ C([0, T ];L2(R)) such that

u(t) = U(t, 0)u0 +

∫ t

0
U(t, s)f(s, u(s))ds ,

for f ∈ C([0, T ]× L2(R);L2(R)) obeying, for all t ∈ [0, T ] and u, v in L2(R),

‖f(t, u)‖ 6 C and ‖f(t, u)− f(t, v)‖L2 6 L‖u− v‖L2 ,

for some positive numbers C,L.
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