MATHEMATICAL TRIPOS Part III

Friday, 3 June, 2022 $\,$ 9:00 am to 12:00 pm $\,$

PAPER 317

STRUCTURE AND EVOLUTION OF STARS

Before you begin please read these instructions carefully

Candidates have THREE HOURS to complete the written examination.

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

SPECIAL REQUIREMENTS None

Cover sheet Treasury tag Script paper Rough paper

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1

Consider a spherically symmetric star in radiative equilibrium. The stellar material is a perfect gas with gas pressure $P_{\rm g}$ and radiation pressure $P_{\rm rad}$. The total pressure is $P = P_{\rm g} + P_{\rm rad}$ and P = P(r) where r is the radius. The star is chemically homogeneous. The opacity is given by Kramer's formula.

Consider the above model under the assumption that the rate of energy release per unit mass ϵ is described by $\epsilon = \text{const}$, that is there is a uniform distribution of sources of energy.

(i) Write down the equations of equilibrium. Show that in the above model $\epsilon = M^{a} L^{b}$ where M and L are the total mass and luminosity of the star. Determine the values of a and b.

(ii) Introduce new variables $y = \beta/(1-\beta)$ with $\beta = P_g/P$ and $x = \frac{4 \pi c G M}{\kappa_0 L} \frac{k}{\mu H} \frac{3}{a} T^{1/2}$, where κ_0 is a constant in the Kramer's formula for the opacity, H is the mass of a hydrogen atom and all other constants have their usual meaning. Derive, using the structure equations in (i)

$$\frac{1}{8}xy\frac{dy}{dx} = x - y(y+1).$$
 (1)

(iii) A solution to equation (1) may be found by a particular expansion of y. You do not need to worry how to find the solution but simply assume that it is given approximately by

$$x = \frac{32}{31}y\,(\frac{32}{31}\,y+1).$$

Show that the star is a polytrope and find in terms of β the effective polytropic index $n = n(\beta)$ relating pressure and density in a standard form $P \propto \rho^{1+1/n}$. Find n for $\beta = 0$ and $\beta = 1$.

 $\mathbf{2}$

Consider the point-source model of a star of mass M, radius R. This means that we assume that the source of energy is just at the center of the star, thus L(r) = const. = L. The star is spherically symmetric. It is in radiative equilibrium. The stellar material is a perfect gas with gas pressure P_g and the radiation pressure is negligible. The total pressure is therefore $P = P_g$ and P = P(r) where r is the radius. The star is chemically homogeneous. The opacity is given by Kramer's law. Assume that at the surface of the star T = 0 and P = 0.

(i) Assume that the star is also so centrally condensed that its gravitational field can be approximated by placing a point mass at the centre. This means that the outside layers have mass so small that variations of mass $m_{\rm r}$ can be neglected though the density ρ of matter is not negligible.

Write down the equations describing this model of a star assuming that the whole star is in local thermodynamic equilibrium.

Find the pressure P and density ρ as functions of the temperature T.

Find the temperature profile T(r) for this star.

(ii) Assume now that the star has an isothermal electron-degenerate non-relativistic core which contains essentially all mass of the star. The pressure given by electron-degenerate non-relativistic matter is $\tilde{K} (\varrho/\mu_{\rm e})^{5/3}$, where $\mu_{\rm e}$ is the mean molecular weight of the electrons and \tilde{K} is a constant. The core has luminosity L. Outside the core, the structure of the star is as determined by relations P(T) and $\varrho(T)$ which were worked out in (i). Assume that all physical parameters are continuous between the core and the outer layers and the core temperature is $T_{\rm c}$. Find L/M for this star in terms of $T_{\rm c}$.

3

Consider a mixture of a perfect homogenous gas and black body radiation. The total pressure is given by $P = P_{\rm g} + P_{\rm rad}$ where $P_{\rm g}$ is the gas pressure and $P_{\rm rad}$ is the radiation pressure. Let $\beta = P_{\rm g}/P$.

(i) Calculate the specific heat $c_{\rm P}$ of this mixture in terms of β .

(ii) Define the adiabatic indices Γ_1 , Γ_2 and Γ_3 . Calculate Γ_1 and Γ_2 in terms of β . Write down an equation describing a relation between Γ_1 , Γ_2 and Γ_3 .

(iii) Calculate the ratio of specific heats $\gamma = c_{\rm P}/c_{\rm V}$ in terms of $(\Gamma_3 - 1)$ and derivatives of the pressure $\left(\frac{\partial \ln P}{\partial \ln T}\right)_{\varrho}$ and $\left(\frac{\partial \ln P}{\partial \ln \varrho}\right)_{\rm T}$.

(iv) What is the relation between γ and Γ_i , i = 1, 2, 3 for $\beta \to 0$ and $\beta \to 1$?

 $\mathbf{4}$

Consider now a spherically symmetric star of total mass M, luminosity L, which is in a radiative equilibrium. The star is made of perfect gas and is chemically homogeneous. The total pressure is provided by gas pressure $P_{\rm g}$ and radiation pressure $P_{\rm rad}$. The opacity of stellar material is given by

$$\kappa = \kappa_0 \, \frac{M_{\rm r}}{L_{\rm r}} \, \frac{L}{M}$$

where κ_0 is a constant, M_r , L_r are the mass interior to radius r and the luminosity at radius r. You may assume that P = 0, T = 0 at the surface. Let $\beta = P_g/P$.

(i) Find $T = T(\beta, \varrho)$ and $P = P(\beta, \varrho)$ for this star.

(ii) Prove that the star is a polytrope $P = K \rho^{1+1/n}$ and that the polytropic constant K does not vary. Derive the appropriate Lane-Emden equation and state boundary conditions. Is it possible to solve this equation analytically in a closed form? Which stars might be approximated by this structure?

(iii) Prove that he luminosity cannot exceed the critical luminosity $L_{\rm crit} = \frac{4 \pi c G M_{\rm r}}{\kappa}$.

(iv) Use homology to prove that the stellar mass obeys $M \propto \frac{(1-\beta)^{1/2}}{\beta^2}$ (no credits will be given for other methods).

END OF PAPER

Part III, Paper 317