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You are reminded of the equations of ideal magnetohydrodynamics in the form

∂ρ

∂t
+∇ · (ρu) = 0, (1)

∂p

∂t
+ u · ∇p+ γp∇ · u = 0, (2)

ρ

(
∂u

∂t
+ (u · ∇)u

)
= −ρ∇Φ−∇p+

1

4π
(∇×B)×B, (3)

∂B

∂t
= ∇× (u×B) , (4)

∇2Φ = 4πGρ. (5)

Conservation laws for momentum

∂(ρu)

∂t
+∇ · Π̂ = 0, Π̂ij = ρuiuj +

(
p+

B2

8π

)
δij −

BiBj
4π

, (6)

and energy

∂

∂t

[
ρ

(
u2

2
+ e

)
+
B2

8π

]
+∇ ·

[
ρu

(
u2

2
+ h

)
+ c

E×B

4π

]
= 0, (7)

where h is the enthalpy obeying dh = T ds + ρ−1dp; h = c2s/(γ − 1) for a polytropic gas
with adiabatic index γ, where cs is the speed of sound.

You may assume that for any scalar function f

∇f =
∂f

∂R
eR +

1

R

∂f

∂φ
eφ +

∂f

∂z
ez (cylindrical coordinates) (8)

∇f =
∂f

∂r
er +

1

r

∂f

∂θ
eθ +

1

r sin θ

∂f

∂φ
eφ (spherical coordinates). (9)

You may assume that for any vector C

(∇×C)×C = (C · ∇)C− 1

2
∇
(
|C|2

)
, (10)

and in cylindrical coordinates

∇ ·C =
1

R

∂(RCR)

∂R
+

1

R

∂Cφ
∂φ

+
∂Cz
∂z

, (11)

∇×C =

(
1

R

∂Cz
∂φ
− ∂Cφ

∂z

)
eR +

(
∂CR
∂z
− ∂Cz
∂R

)
eφ +

1

R

[
∂(RCφ)

∂R
− ∂CR

∂φ

]
ez.(12)

For any two vectors C and D

∇× (C×D) = C(∇ ·D) + (D · ∇)C−D(∇ ·C)− (C · ∇)D, (13)

∇ · (C×D) = D · (∇×C)−C · (∇×D). (14)

You may refer to these formulae in your solutions, but, please, make sure to provide
sufficient details when using them.
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1

(a) Define what it means for a magnetostatic structure to be in force-free equilibrium.
Show that the magnetic field structure in a force-free equilibrium is governed by the
equation

∇×B =
4π

c
αB,

where α is a function of spatial coordinates. Identify a constraint on the behaviour of
α(r).

(b) Consider a magnetostatic force-free configuration in Cartesian r = (x, y, z)
coordinates. Assume that B does not depend on y and z. Derive a closed form equation
for the z-component of the magnetic field Bz for a general α(r) = α(x). Show that the
constraint on the behaviour of α(r) is satisfied by this solution.

(c) Obtain a general solution of the equation derived in part (b) and determine all field
components for a general α(x).

(d) Consider a particular form for α(x), namely

α(x) =
c

4π

a2x

(x2 + d2)2
,

where a and d are some constant length scales. Find the condition on d/a for the magnetic
field components to not change sign anywhere in space, if it is also known that Bz → 0 as
x→ ±∞.

2

(a) Consider a steady, transonic flow of unmagnetized, ideal fluid. Let j = ρu be
the fluid flux, where ρ and u are the fluid density and velocity, respectively. Neglecting
gravity, find the expression for dj/du (where j = |j|, u = |u|) and use it to demonstrate
the difference in the behaviour of j in the sub-sonic and super-sonic regimes.

[Hint: You may find it useful to project the equation of motion along the fluid
streamline.]

(b) Show that j attains a maximum value at some point as u transitions from sub-sonic
to super-sonic regimes. Let us denote the value of the sound speed of the flow at that
point a critical speed ccr. How is the velocity of the flow at that point related to ccr?

(c) Assume that fluid is polytropic with adiabatic index γ. Establish a relation between
the Bernoulli function of a streamline CB and ccr, thereby demonstrating that ccr is a
unique characteristic of every streamline of the flow.

(d) Consider a planar shock in a uniform fluid flow, with no velocity parallel to the
shock plane. Let u1 and u2 be the pre-shock and post-shock fluid velocities in the frame of
the shock. Show that there is a unique relation between the product u1u2 and the critical
velocity of the flow ccr and derive its explicit form.
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The gravitational potential in the central region of a spherical galaxy is dominated by a
static dark matter configuration with the density distribution

ρdm(r) =
Ψ0

r5/2
,

where Ψ0 > 0 is a constant and r is the distance from the center of the galaxy. Dark matter
particles do not interact with normal matter apart from their gravitational coupling.

(a) Derive the gravitational potential Φdm(r) due to the dark matter configuration alone.

(b) The central part of the galaxy also contains unmagnetized gas, which is uniform and
has density ρ0 and sound speed c0 far from the galactic centre. The gas is polytropic, with
adiabatic index γ > 1. A small black hole of mass M residing at r = 0 accretes this gas
in a spherically-symmetric fashion. Neglecting the gravity of the black hole, demonstrate
that the accretion flow admits a sonic point as long as γ satisfies a constraint that is to
be determined explicitly. You may assume that the accretion flow is time independent.

(c) Assuming that accretion is transonic, determine the radius of the sonic point. Find
the mass accretion rate onto the black hole Ṁ and comment on the difference of Ṁ
dependence on c0 compared to the case of classical Bondi accretion.

(d) Find the condition on the black hole mass for the subsonic part of the accretion
flow to be only weakly affected by the gravitational effect of the black hole, justifying the
assumption made in part (b).

4

The cross-helicity of a magnetized flow Hc is defined such that its volumetric density
is hc = u ·B, where u is the velocity and B is the magnetic field.

(a) Formulate a conservation law for the cross-helicity, i.e. find an explicit form for the
cross-helicity density flux F c and the source term Sc such that

∂hc
∂t

+∇ · F c = Sc,

and Sc vanishes for the homentropic flow (i.e. the one with spatially uniform entropy).

(b) Consider a time-dependent, magnetized, homentropic flow, in which the velocity u
is everywhere parallel to the magnetic field B. Show that in such a flow the helicity

Hc =

∫

V
hc dV

is conserved in any volume V as long as the the Bernoulli function, as defined for a steady,
unmagnetized flow, does not vary along the magnetic field lines.

END OF PAPER

Part III, Paper 314


