
MATHEMATICAL TRIPOS Part III

Monday, 13 June, 2022 9:00 am to 12:00 pm

PAPER 312

FIELD THEORY IN COSMOLOGY

Before you begin please read these instructions carefully

Candidates have THREE HOURS to complete the written examination.

Attempt no more than THREE questions.
There are FOUR questions in total.
The questions carry equal weight.

STATIONERY REQUIREMENTS SPECIAL REQUIREMENTS
Cover sheet None
Treasury tag
Script paper
Rough paper

You may not start to read the questions
printed on the subsequent pages until
instructed to do so by the Invigilator.



2

1

When expanded to quadratic order in scalar field fluctuations ϕ, a particular model of
inflation is found to give the action,

S2[ϕ] =

∫
dt d3x

a3

2

(
ϕ̇2 − c2(∂iϕ)2 − 2H2ϕ2

)
,

where the parameters c and H = ȧ/a may be treated as constants.

(a) Show that the free equation of motion for ϕ in momentum space is,

(
∂2τ + c2k2

)
aϕk = 0 ,

when written in terms of conformal time dτ = dt/a.

(b) Show that the mode functions in this free theory take the form,

fk(τ) = N τ exp (−ickτ) ,

and determine the overall normalisation, N .

(c) Find the power spectrum, 〈ϕkϕk′〉, in this free theory at any finite time τ .

(d) When further expanded to quartic order in ϕ, this model of inflation is found to contain
the interaction,

S4[ϕ] =

∫
dt d3x

a3

4!
λϕ4 .

Find the trispectrum 〈ϕk1ϕk2ϕk3ϕk4〉 at time τ to leading order in λ.

(e) Under which of the ten de Sitter isometries do you expect these correlators to be
invariant?
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2

A massless vector field Aµ on an FLRW spacetime background is described by the
quadratic action,

S2[Aµ] =

∫
dt d3x a3

[
−1

4
FµνFµν

]
,

where Fµν = ∂µAν − ∂νAµ is invariant under the gauge symmetry,

Aµ → Aµ + ∂µε .

(a) Separate Aµ into two 3d scalars and a transverse 3d vector AVi , and find how each of
these 3d objects transforms under the gauge symmetry. Identify a combination of your 3d
scalars which is gauge-invariant. You may assume that ∂i∂iε 6= 0.

(b) By performing the same 3d decomposition in S2[Aµ], find the constraint equation
which fixes this gauge-invariant scalar.

(c) Consider the gauge transformation with parameter,

ε(t,x) = bi(t)x
i . (1)

Find the new field configuration generated by applying this transformation to the trivial
solution, Aµ = 0. What condition on bi(t) would allow this to be deformed into a physical
perturbation?

(d) Assuming now that bi is a constant, write down the generator Q of the symmetry
transformation (1) in terms of Πi, the momentum conjugate to AVi . Treating Πi and AVi
as free fields with mode functions fk(t), show that when acting on the vacuum,

Q|0〉 = lim
q→0

[
a3∂tf

∗
q

f∗q
biAVi (q)|0〉

]
.

(e) Using the Ward identity associated with this gauge transformation, find a relation
between the correlators 〈OAVi 〉 and 〈AVi O〉 in the limit where the AVi momentum vanishes,
where O is any neutral operator (invariant under the gauge symmetry). How would your
result change if O were charged under the gauge symmetry?
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3 (a) In a simple model of nonlinear biasing, the galaxy distribution δg is given as
a term proportional to the linear density perturbation δ (a Gaussian Random Field) plus
the squared quantity δ2 as

δg(x) = b1δ(x) + 1
2b2
(
δ2(x)− 〈δ2(x)〉

)
,

where b1, b2 are bias parameters. By first finding an expression for the second-order
solution δg(k) in Fourier space, show the leading contribution to the bispectrum is

〈δ(k1) δ(k2) δ(k3)〉 = b21b2(2π)3δ(D)(k1 + k2 + k3)
(
P (k1)P (k2) + cyclic perms

)
,

where the power spectrum is 〈δ(k1) δ(k2)〉 = (2π)3P (k1) δ(k1 + k2) with k = |k|.

(b) The collisional Boltzmann equation for the CMB can be expressed in the form

dΘ

dτ
= −dΨ

dτ
+ Φ′ + Ψ′ + Γ (Θ0 −Θ− n̂ · ve) , (†)

where Θ is the temperature perturbation, Θ0 is its monopole (without directional
dependence), Φ and Ψ are the gravitational potentials in the Newtonian gauge, ve is the
electron velocity and n̂ is the line of sight. Here, Γ(τ) is the electron collision rate which
yields the optical depth T (τ) ≡

∫ τ0
τ dτ ′ Γ(τ ′) and the visibility function g(τ) ≡ −T ′e−T .

(i) Use an integrating factor to find an integral solution of (†), then assume
instantaneous recombination, g(τ) = δ(D)(τ − τdec), to derive the Sachs-Wolfe formula
(at x0 = 0):

Θ(τ0,x0 = 0, n̂) = Θ0,dec + Ψdec − n̂ · ve +

∫ τ0

τdec

dτ (Φ′ + Ψ′) .

Briefly describe each physical contribution to the CMB temperature anisotropy.

(ii) The Fourier transform of the Boltzmann equation (†) can also be written as

Θ′ + ikµΘ = Φ′ − ikµΨ + Γ(Θ0 −Θ + iµve) , (∗)

where µ = n̂ · k̂. Axisymmetry means that the directional dependence of the Boltzmann
equation can be expanded in Legendre polynomials P`(µ) as

Θ(τ,k, n̂) =
∞∑

`=0

(−i)`(2`+ 1) Θ`(τ,k)P`(µ) ,

where Θ`(τ,k) = 1
(−i)`

∫ dµ
2 P`(µ) Θ(τ,k, n̂). Derive the Boltzmann hierarchy from (∗) to

find the expressions:

Θ′0 + kΘ1 = Φ′ ,

3Θ′1 + k (Θ2 −Θ0) = kΨ− Γ(3Θ1 + ve) ,

Θ′` +
k

2`+ 1
((`+ 1)Θ`+1 − `Θ`−1) = −ΓΘ` , (for ` > 2) .

[You may use the recursion relation (2`+ 1)µP`(µ) = (`+ 1)P`+1(µ) + ` P`−1(µ) and the
orthogonality condition

∫ 1
−1 dµP`(µ)P`′(µ) = 2 δ``′/(2`+ 1).]
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4 (i) Assume that the matter density perturbation δ(x, τ) and velocity v(x, τ) satisfy

δ′ +∇ · [(1 + δ)v] = 0 , v′i +Hvi + v · ∇vi = −∇iφ− ρ−1∇j (ρ σij) , (∗)

where ρ is the matter density, σij is the anisotropic stress tensor, and the gravitational
potential φ obeys ∇2φ = 3

2Hδ, with H = a′/a in an Einstein-de Sitter universe with scale
factor a. You are given the following second-order perturbative solution in Fourier space

δ̃(2)(k) =

∫
d3k1

(2π)3

∫
d3k2

(2π)3
F2(k1,k2) δ̃

(1)(k1) δ̃
(1)(k2) (2π)3δ(D)(k1 + k2 − k) , (†)

where a power series ansatz for δ and θ = ∇ · v defines terms at each order

δ(k, τ) = a(τ) δ̃(1)(k) + a2(τ) δ̃(2)(k) + ... , θ(k, τ) = −H(τ)
[
a θ̃(1)(k) + a2 θ̃(2)(k) + ...

]
,

and the two-point coupling kernel F2(k1,k2) is given by

F2(k1,k2) =
1

14

1

k21 k
2
2

[
10 k21 k

2
2 + 7 (k1 · k2)

(
k21 + k22

)
+ 4 (k1 · k2)

2
]
.

Briefly state the underlying assumptions that have been used to obtain the second-order
solution (†). [You are not required to derive (†).]

(ii) Using Feynmann diagrams (or otherwise) write down integral expressions for the one-
loop power spectrum in terms of the linear solutions and two-point F2(k1,k2) and three-
point F3(k1,k2,k3) coupling kernels (assumed to be given), that is, specify the following:

P1-loop(k) = a2P (k) + a4 [P22(k) + 2P13(k)] ,

where the linear power spectrum is given by 〈δ̃(1)(k1) δ̃
(1)(k2)〉 = (2π)3δ(D)(k1 +k2)P (k).

(iii) Show that the P22(k) power spectrum can be written with µ = k̂ · q̂ in the form

P22(k) =

∫
dq

4π2

∫ 1

−1
dµ

k4
(
7kµ+ q(3− 10µ2)

)2

98 (k2 − 2kqµ+ q2)2
P (q)P

(√
k2 − 2µkq + q2

)
.

Hence, show the infrared limit (IR: q → 0 or |k − q| → 0) and ultraviolet limit (UV:
q � k) of the P22(k) integrand contributions can be represented as:

P22,IR(k) −→ 1

3
k2P (k)

∫
dq

2π2
P (q) , P22,UV(k) −→ 9

98
k4
∫

dq

2π2
P 2(q)

q2
.

(iv) You are given that the IR and UV contributions for the P13(k) power spectrum are

P13,IR(k) −→ − 1

6
k2P (k)

∫
dq

2π2
P (q) , P13,UV(k) −→ − 61

630
k2P (k)

∫
dq

2π2
P (q) .

Using the asymptotic properties of P13 and P22, discuss the leading-order counterterm
required to remove the cut-off dependence of the one-loop power spectrum in the Effective
Field Theory of Large-Scale Structure. Provide some physical motivation for introducing
this counterterm in the context of the dynamical equations (∗).
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