MATHEMATICAL TRIPOS Part III

Monday, 13 June, 2022 $\,$ 9:00 am to 12:00 pm $\,$

PAPER 312

FIELD THEORY IN COSMOLOGY

Before you begin please read these instructions carefully

Candidates have THREE HOURS to complete the written examination.

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

SPECIAL REQUIREMENTS None

Cover sheet Treasury tag Script paper Rough paper

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

 $\mathbf{1}$

When expanded to quadratic order in scalar field fluctuations φ , a particular model of inflation is found to give the action,

$$S_2[\varphi] = \int dt \, d^3 \mathbf{x} \, \frac{a^3}{2} \left(\dot{\varphi}^2 - c^2 (\partial_i \varphi)^2 - 2H^2 \varphi^2 \right) \,,$$

where the parameters c and $H = \dot{a}/a$ may be treated as constants.

(a) Show that the free equation of motion for φ in momentum space is,

$$\left(\partial_{\tau}^2 + c^2 k^2\right) a \,\varphi_{\mathbf{k}} = 0 \;,$$

when written in terms of conformal time $d\tau = dt/a$.

(b) Show that the mode functions in this free theory take the form,

$$f_k(\tau) = \mathcal{N}\,\tau\exp\left(-ick\tau\right)$$

and determine the overall normalisation, \mathcal{N} .

(c) Find the power spectrum, $\langle \varphi_{\mathbf{k}} \varphi_{\mathbf{k}'} \rangle$, in this free theory at any finite time τ .

(d) When further expanded to quartic order in φ , this model of inflation is found to contain the interaction,

$$S_4[\varphi] = \int dt \, d^3x \frac{a^3}{4!} \, \lambda \varphi^4 \, .$$

Find the trispectrum $\langle \varphi_{\mathbf{k}_1} \varphi_{\mathbf{k}_2} \varphi_{\mathbf{k}_3} \varphi_{\mathbf{k}_4} \rangle$ at time τ to leading order in λ .

(e) Under which of the ten de Sitter isometries do you expect these correlators to be invariant?

 $\mathbf{2}$

A massless vector field A_{μ} on an FLRW spacetime background is described by the quadratic action,

$$S_2[A_{\mu}] = \int dt \, d^3 \mathbf{x} \, a^3 \left[-\frac{1}{4} F^{\mu\nu} F_{\mu\nu} \right] \,,$$

where $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$ is invariant under the gauge symmetry,

$$A_{\mu} \to A_{\mu} + \partial_{\mu} \epsilon$$
.

(a) Separate A_{μ} into two 3d scalars and a transverse 3d vector A_i^V , and find how each of these 3d objects transforms under the gauge symmetry. Identify a combination of your 3d scalars which is gauge-invariant. You may assume that $\partial_i \partial_i \epsilon \neq 0$.

(b) By performing the same 3d decomposition in $S_2[A_\mu]$, find the constraint equation which fixes this gauge-invariant scalar.

(c) Consider the gauge transformation with parameter,

$$\epsilon(t, \mathbf{x}) = b_i(t)\mathbf{x}^i \,. \tag{1}$$

Find the new field configuration generated by applying this transformation to the trivial solution, $A_{\mu} = 0$. What condition on $b_i(t)$ would allow this to be deformed into a physical perturbation?

(d) Assuming now that b_i is a constant, write down the generator Q of the symmetry transformation (1) in terms of Π^i , the momentum conjugate to A_i^V . Treating Π^i and A_i^V as free fields with mode functions $f_k(t)$, show that when acting on the vacuum,

$$Q|0\rangle = \lim_{\mathbf{q}\to 0} \left[\frac{a^3 \partial_t f_q^*}{f_q^*} \, b^i A_i^V(\mathbf{q}) |0\rangle \right] \; .$$

(e) Using the Ward identity associated with this gauge transformation, find a relation between the correlators $\langle \mathcal{O}A_i^V \rangle$ and $\langle A_i^V \mathcal{O} \rangle$ in the limit where the A_i^V momentum vanishes, where \mathcal{O} is any neutral operator (invariant under the gauge symmetry). How would your result change if \mathcal{O} were charged under the gauge symmetry?

3 (a) In a simple model of nonlinear biasing, the galaxy distribution $\delta_{\rm g}$ is given as a term proportional to the linear density perturbation δ (a Gaussian Random Field) plus the squared quantity δ^2 as

$$\delta_{g}(\mathbf{x}) = b_{1}\delta(\mathbf{x}) + \frac{1}{2}b_{2}\left(\delta^{2}(\mathbf{x}) - \langle\delta^{2}(\mathbf{x})\rangle\right),$$

where b_1, b_2 are bias parameters. By first finding an expression for the second-order solution $\delta_{g}(\mathbf{k})$ in Fourier space, show the leading contribution to the bispectrum is

$$\langle \delta(\mathbf{k}_1) \, \delta(\mathbf{k}_2) \, \delta(\mathbf{k}_3) \rangle = b_1^2 b_2 (2\pi)^3 \delta^{(D)} (\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3) (P(k_1)P(k_2) + \text{cyclic perms}),$$

where the power spectrum is $\langle \delta(\mathbf{k}_1) \, \delta(\mathbf{k}_2) \rangle = (2\pi)^3 P(k_1) \, \delta(\mathbf{k}_1 + \mathbf{k}_2)$ with $k = |\mathbf{k}|$.

(b) The collisional Boltzmann equation for the CMB can be expressed in the form

$$\frac{d\Theta}{d\tau} = -\frac{d\Psi}{d\tau} + \Phi' + \Psi' + \Gamma \left(\Theta_0 - \Theta - \hat{\mathbf{n}} \cdot \mathbf{v}_e\right) \,, \tag{\dagger}$$

where Θ is the temperature perturbation, Θ_0 is its monopole (without directional dependence), Φ and Ψ are the gravitational potentials in the Newtonian gauge, \mathbf{v}_e is the electron velocity and $\hat{\mathbf{n}}$ is the line of sight. Here, $\Gamma(\tau)$ is the electron collision rate which yields the optical depth $\mathcal{T}(\tau) \equiv \int_{\tau}^{\tau_0} d\tau' \Gamma(\tau')$ and the visibility function $g(\tau) \equiv -\mathcal{T}' e^{-\mathcal{T}}$.

(i) Use an integrating factor to find an integral solution of (†), then assume instantaneous recombination, $g(\tau) = \delta^{(D)}(\tau - \tau_{dec})$, to derive the Sachs-Wolfe formula (at $\mathbf{x}_0 = 0$):

$$\Theta(\tau_0, \mathbf{x}_0 = 0, \hat{\mathbf{n}}) = \Theta_{0, \text{dec}} + \Psi_{\text{dec}} - \hat{\mathbf{n}} \cdot \mathbf{v}_{\text{e}} + \int_{\tau_{\text{dec}}}^{\tau_0} d\tau \left(\Phi' + \Psi'\right)$$

Briefly describe each physical contribution to the CMB temperature anisotropy.

(ii) The Fourier transform of the Boltzmann equation (†) can also be written as

$$\Theta' + ik\mu\Theta = \Phi' - ik\mu\Psi + \Gamma(\Theta_0 - \Theta + i\mu v_e), \qquad (*)$$

where $\mu = \hat{\mathbf{n}} \cdot \hat{\mathbf{k}}$. Axisymmetry means that the directional dependence of the Boltzmann equation can be expanded in Legendre polynomials $P_{\ell}(\mu)$ as

$$\Theta(\tau, \mathbf{k}, \hat{\mathbf{n}}) = \sum_{\ell=0}^{\infty} (-i)^{\ell} (2\ell+1) \,\Theta_{\ell}(\tau, \mathbf{k}) \,P_{\ell}(\mu) \,,$$

where $\Theta_{\ell}(\tau, \mathbf{k}) = \frac{1}{(-i)^{\ell}} \int \frac{d\mu}{2} P_{\ell}(\mu) \Theta(\tau, \mathbf{k}, \hat{\mathbf{n}})$. Derive the Boltzmann hierarchy from (*) to find the expressions:

$$\begin{aligned} \Theta_0' + k\Theta_1 &= \Phi', \\ 3\Theta_1' + k \left(\Theta_2 - \Theta_0\right) &= k\Psi - \Gamma(3\Theta_1 + v_e), \\ \Theta_\ell' + \frac{k}{2\ell + 1} \left((\ell + 1)\Theta_{\ell+1} - \ell\Theta_{\ell-1} \right) &= -\Gamma\Theta_\ell, \quad \text{(for } \ell \ge 2). \end{aligned}$$

[You may use the recursion relation $(2\ell+1)\mu P_{\ell}(\mu) = (\ell+1)P_{\ell+1}(\mu) + \ell P_{\ell-1}(\mu)$ and the orthogonality condition $\int_{-1}^{1} d\mu P_{\ell}(\mu) P_{\ell'}(\mu) = 2 \delta_{\ell\ell'}/(2\ell+1)$.]

Part III, Paper 312

4 (i) Assume that the matter density perturbation $\delta(\mathbf{x}, \tau)$ and velocity $\mathbf{v}(\mathbf{x}, \tau)$ satisfy

$$\delta' + \nabla \cdot \left[(1+\delta) \mathbf{v} \right] = 0, \qquad v'_i + \mathcal{H} v_i + \mathbf{v} \cdot \nabla v_i = -\nabla_i \phi - \rho^{-1} \nabla_j \left(\rho \, \sigma_{ij} \right), \quad (*)$$

where ρ is the matter density, σ_{ij} is the anisotropic stress tensor, and the gravitational potential ϕ obeys $\nabla^2 \phi = \frac{3}{2} \mathcal{H} \delta$, with $\mathcal{H} = a'/a$ in an Einstein-de Sitter universe with scale factor a. You are given the following second-order perturbative solution in Fourier space

$$\tilde{\delta}^{(2)}(\mathbf{k}) = \int \frac{d^3 \mathbf{k}_1}{(2\pi)^3} \int \frac{d^3 \mathbf{k}_2}{(2\pi)^3} F_2(\mathbf{k}_1, \mathbf{k}_2) \,\tilde{\delta}^{(1)}(\mathbf{k}_1) \,\tilde{\delta}^{(1)}(\mathbf{k}_2) \,(2\pi)^3 \delta^{(\mathrm{D})}(\mathbf{k}_1 + \mathbf{k}_2 - \mathbf{k}) \,, \quad (\dagger)$$

where a power series ansatz for δ and $\theta = \nabla \cdot \mathbf{v}$ defines terms at each order

$$\delta(\mathbf{k},\tau) = a(\tau)\,\tilde{\delta}^{(1)}(\mathbf{k}) + a^2(\tau)\,\tilde{\delta}^{(2)}(\mathbf{k}) + \dots, \quad \theta(\mathbf{k},\tau) = -\mathcal{H}(\tau)\left[a\,\tilde{\theta}^{(1)}(\mathbf{k}) + a^2\,\tilde{\theta}^{(2)}(\mathbf{k}) + \dots\right],$$

and the two-point coupling kernel $F_2(\mathbf{k}_1, \mathbf{k}_2)$ is given by

$$F_2(\mathbf{k}_1, \mathbf{k}_2) = \frac{1}{14} \frac{1}{k_1^2 k_2^2} \left[10 \, k_1^2 \, k_2^2 + 7 \, (\mathbf{k}_1 \cdot \mathbf{k}_2) \left(k_1^2 + k_2^2 \right) + 4 \, (\mathbf{k}_1 \cdot \mathbf{k}_2)^2 \right] \,.$$

Briefly state the underlying assumptions that have been used to obtain the second-order solution (\dagger) . [You are not required to derive (\dagger) .]

(ii) Using Feynmann diagrams (or otherwise) write down integral expressions for the oneloop power spectrum in terms of the linear solutions and two-point $F_2(\mathbf{k}_1, \mathbf{k}_2)$ and threepoint $F_3(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3)$ coupling kernels (assumed to be given), that is, specify the following:

$$P_{1-\text{loop}}(k) = a^2 P(k) + a^4 \left[P_{22}(k) + 2P_{13}(k) \right],$$

where the linear power spectrum is given by $\langle \tilde{\delta}^{(1)}(\mathbf{k}_1) \, \tilde{\delta}^{(1)}(\mathbf{k}_2) \rangle = (2\pi)^3 \delta^{(D)}(\mathbf{k}_1 + \mathbf{k}_2) P(k).$ (iii) Show that the $P_{22}(k)$ power spectrum can be written with $\mu = \hat{\mathbf{k}} \cdot \hat{\mathbf{q}}$ in the form

$$P_{22}(k) = \int \frac{dq}{4\pi^2} \int_{-1}^{1} d\mu \, \frac{k^4 \left(7k\mu + q(3-10\mu^2)\right)^2}{98 \left(k^2 - 2kq\mu + q^2\right)^2} P(q) P\left(\sqrt{k^2 - 2\mu kq + q^2}\right)$$

Hence, show the infrared limit (IR: $q \to 0$ or $|\mathbf{k} - \mathbf{q}| \to 0$) and ultraviolet limit (UV: $q \gg k$) of the $P_{22}(k)$ integrand contributions can be represented as:

$$P_{22,\mathrm{IR}}(k) \longrightarrow \frac{1}{3}k^2 P(k) \int \frac{dq}{2\pi^2} P(q) , \qquad \qquad P_{22,\mathrm{UV}}(k) \longrightarrow \frac{9}{98}k^4 \int \frac{dq}{2\pi^2} \frac{P^2(q)}{q^2} .$$

(iv) You are given that the IR and UV contributions for the $P_{13}(k)$ power spectrum are

$$P_{13,\text{IR}}(k) \longrightarrow -\frac{1}{6}k^2 P(k) \int \frac{dq}{2\pi^2} P(q) , \qquad P_{13,\text{UV}}(k) \longrightarrow -\frac{61}{630}k^2 P(k) \int \frac{dq}{2\pi^2} P(q) .$$

Using the asymptotic properties of P_{13} and P_{22} , discuss the leading-order counterterm required to remove the cut-off dependence of the one-loop power spectrum in the Effective Field Theory of Large-Scale Structure. Provide some physical motivation for introducing this counterterm in the context of the dynamical equations (*).

Part III, Paper 312

[TURN OVER]