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1 A spacetime containing a static, spherically symmetric, star has line element

ds2 = −e2Φ(r)dt2 +
dr2

1− 2m(r)

r

+ r2(dθ2 + sin2 θdφ2) ,

where θ ∈ [0, π] and φ ∼ φ+ 2π are the usual angles on the unit round two sphere.

The matter inside the star is described by a perfect fluid with energy momentum
tensor Tab = (ρ+ p)uaub + p gab and equation of state p = p(ρ) with ρ, p > 0, dp/dρ > 0.
The Einstein equation reduces to the Tolman-Oppenheimer-Volkov (TOV) equations:

dm

dr
= 4πr2ρ ,

dΦ

dr
=
m+ 4πr3p

r(r − 2m)

dp

dr
= −(p+ ρ)

m+ 4πr3p

r(r − 2m)
.

(a) (i) Let R denote the radius of the star, so p, ρ vanish for r > R. Show that the
metric outside the star is the Schwarzschild metric. [4]

(ii) Explain why smooth solutions of the TOV equations form a 1-parameter
family, labelled uniquely by ρc ≡ ρ(0). [6]

(iii) Assume that the equation of state is known for ρ 6 ρ0 but not for ρ > ρ0.
Explain why there is a maximum possible mass for the star that is independent
of the equation of state for ρ > ρ0. [6]

You may assume that a solution of the TOV equations satisfies

m(r)

r
<

2

9

[
1− 6πr2p+ (1 + 6πr2p)1/2

]
.

(b) Now assume that the star has constant density ρ = ρ0 for 0 6 r 6 R.

(i) Show that for 0 6 r 6 R

p(r) = ρ0

√
1− 2M

R
−
√

1− 2M r2

R3√
1− 2Mr2

R3
− 3

√
1− 2M

R

.

[8]

(ii) The matter at the centre of the star obeys a linear barotropic bound p(0) 6
ω ρ(0), with ω > 0. Derive an upper bound on M/R for a constant density
star satisfying this condition and show that such stars can get arbitrarily close
to saturating Buchdahl’s inequality. [6]
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2 The metric and gauge potential of a spherically symmetric isolated charged
gravitating object in d > 4 spacetime dimensions is, in Schwarzschild-like coordinates,

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

d−2 , A = − Q

rd−3
dt , (?)

where dΩ2
d−2 is the line element on a unit radius (d− 2) round sphere, defined iteratively

as

dΩ2
1 = dφ2 ,

dΩ2
n+1 = dθ2n + sin2 θndΩ2

n ,

with θi ∈ [0, π] for i = 1, . . . , d−3 and φ a periodic coordinate with period 2π. Furthermore,

f(r) =

(
1− rd−3+

rd−3

)(
1− rd−3−

rd−3

)
,

where 0 6 r− 6 r+ and Q = r
d−3
2

+ r
d−3
2
− .

(a) Show that

K =
∂

∂t

is a Killing vector field. [2]

(b) Construct the analogue of ingoing Eddington-Finkelstein coordinates and determine
the form of the metric in these coordinates. Explain briefly why this metric can be
analytically extended across the surface r = r+. [4]

(c) Show that r = r+ is a null hypersurface and is a Killing horizon of the Killing vector
field K and determine its associated surface gravity. [6]

(d) Show that r = 0 is not a coordinate singularity and sketch the Penrose diagrams,
carefully distinguishing between the cases r− = 0, 0 < r− < r+ and r− = r+. [6]

(e) The equations of motion for a particle with mass m, electric charge q and 4−velocity
U are

Ua∇aU
b =

q

m
F b

cU
c .

(i) Show that
E = −mK · U + qΦ

is conserved along the particle’s worldline with iKF = dΦ. [4]

(ii) Choose limr+∞Φ = 0. Show that if q and Q have opposite signs, E can
become negative for a future-directed particle held at fixed (r, θ1, . . . , θ2, φ),
with r sufficiently close to r+. Explain why this fact can be used to extract
energy from the black hole. [4]

(iii) Obtain an upper limit for the amount of energy that can be extracted from
this process and show that this upper limit agrees with that obtained from
the area theorem. [4][You may assume that the mass of the spacetime is given by

M =
rd−3
+ +rd−3

−
2 and that a particle of charge q and mass m crossing the black

hole event horizon will charge the black hole charge by an amount δQ = q.]
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3 Let (M, g) be a globally hyperbolic spacetime with a Cauchy surface S. Assume
that the Einstein equation and the strong energy condition are satisfied. Introduce a
function t defined near S, so that t = 0 on S and let ta = ∇at have tata = −1 and ta be
future-directed.

(a) Show that ta is a geodesic vector field emanating normally from S. [2]

(b) Let c = −∇at
a be the convergence of ta. Show that

ta∇ac = Rabt
atb + (∇atb)(∇atb) ,

where Rab are the components of the Ricci tensor. [4]

(c) Use the results in part (b) to show that

ta∇ac >
1

3
c2 .

[Hint: consider expanding SabSab, where Sab = ∇atb − 1
3(gab + tatb)∇ct

c.] [10]

(d) Show that if c = c0 > 0 at some initial point on the geodesic, then c must become
infinite at least by a further proper distance 3/c0 along the geodesic. [4]

(e) Let c be bounded below on S by some positive constant c0. Show that (M, g) must
be timelike geodesically incomplete.

[You may assume that if p lies in the domain of dependence of S there will exist a
timelike curve from p to S of maximal length and that if c diverges, nearby timelike
geodesics intersect.] [10]

4 Write an essay on the relation of black holes to thermodynamics.

You should start with a statement of the laws of black hole mechanics and explain
why they are analogous to the laws of thermodynamics. You should explain how the
connection between surface gravity and temperature, together with the first law of black
hole mechanics, leads to the Bekenstein-Hawking formula for the entropy of a black hole.

Next, you should consider a quantum scalar field Φ satisfying the wave equation
∇a∇aΦ = 0 in a globally hyperbolic non-stationary spacetime that is asymptotic to
Minkowski spacetime in the far past and far future (i.e. a sandwich spacetime), and explain
how the vacuum state can evolve to a non-vacuum state. This discussion should carefully
describe the quantization of the scalar field, why the notion of particle is ambiguous and
discuss particle production in a sandwich spacetime. You should then explain briefly how
your results apply to late-time Hawking radiation from a Schwarzschild black hole formed
from gravitational collapse.

You should conclude with a brief discussion of some of the implications of Hawking
radiation for black holes. [30]
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