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1 (a) From the continuity equation, determine the scaling of the energy density ρ
with scale factor a for a component with constant equation of state parameter w. Hence
show that the Hubble parameter can be written as H(z) = H0E(z), with

E(z) =

[∑

i

Ωi,0(1 + z)3(1+wi)

]1/2
, (1)

where you should define Ωi,0 and where the sum is over components i with constant
equation of state parameters wi. Explain how the expansion of the universe, parametrized
by a(t), can be determined given Ωi,0 and wi for all components.

(b) Now consider a universe containing only cold dark matter (m) and a non-standard
dark energy component (DE); the non-standard dark energy component has an equation
of state parameter that is not constant, but instead depends on redshift in the following
way:

w(z) = w0 +
waz

1 + z
, (2)

where w0 and wa are constant parameters. Carefully show that in such a universe the
Hubble parameter is given by

H(z) = H0

[
Ωm,0(1 + z)3 +X(ΩDE,0, z, w0, wa)

]1/2
, (3)

where X(ΩDE,0, z, w0, wa) is a function you should specify.

(c) A bright source in a distant galaxy emits photons at a time ts that are received on
earth at time t0. The source’s redshift z1 is initially measured by astronomers at a time
t0. The redshift of the same source is measured a second time, giving z2, after waiting
an interval ∆t0= 10 years (which corresponds to an interval of ∆ts in the rest frame of
the source). Argue first that the difference ∆z ≡ z2 − z1 (referred to as the redshift drift)
between the redshifts of the source at times t0 + ∆t0 and t0 is given by

∆z =
a(t0 + ∆t0)

a(ts + ∆ts)
− a(t0)

a(ts)
. (4)

After relating ∆ts to ∆t0, show that the redshift drift ∆z is given by

∆z = f(z1,∆t0, E(z1), H0), (5)

where you should determine the function f(z1,∆t0, E(z1), H0). You may perform all
calculations to linear order in H∆t ∼ ∆t/t� 1.
[Hint: to relate ∆ts to ∆t0, you may wish to argue that the conformal time elapsed must
be the same at emission and observation]

(d) Could such measurements of source redshift drifts be used to simultaneously determine
H0, Ωm,0, and ΩDE,0, w0, wa (the parameters of the non-standard dark energy model from
part (b))? Briefly justify your answer.
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2 In this question you will discuss recombination and the decoupling of CMB photons
in the early universe.
(a) At high temperatures (T > 1eV), electrons, protons and neutral Hydrogen are in
equilibrium due to reactions such as e− + p↔ H + γ. Show that the equilibrium number
density nH of neutral Hydrogen is given by the equation

(
nH
n2e

)

eq

=

(
2π

meT

)3/2

eBH/T , (1)

where ne is the free electron number density, BH = me+mp−mH is the binding energy of
Hydrogen, and me,mp,mH are the electron, proton, and neutral Hydrogen masses. You
may assume charge neutrality of the universe.
[Hint: you may assume that the equilibrium number density for non-relativisic particles is

neqi = gi

(
miT
2π

)3/2
exp

(µi−mi
T

)
]

(b) Hence derive the Saha equation, which describes the recombination process in
equilibrium: (

1−Xe

X2
e

)

eq

=
2ζ(3)

π2
η

(
2πT

me

)3/2

eBH/T , (2)

where Xe ≡ ne
nb

is the free electron fraction, nb is the number density of baryons, and

η ≡ nb
nγ
∼ 10−9 is the baryon-photon ratio. You may neglect all nuclei other than protons

(so that nb ≈ np + nH , where np is the proton number density). You may also assume

that the photon number density is given by nγ(T ) = 2ζ(3)
π2 T 3.

Define the recombination temperature Trec as when Xe falls below Xe = 0.1.
Evaluating the Saha equation gives Trec ≈ 0.3eV ≈ 3600K. Why is this temperature
much lower than the naive recombination temperature T ≈ BH ≈ 13.6eV?

(c) Photons interact with the primordial plasma primarily via their interactions with
electrons. You may assume that the interaction rate is Γγ ≈ neσT , where σT is the
Thomson cross-section. State the criterion for decoupling of photons from the primordial
plasma to occur and show that this takes place at an approximate temperature Tdec
specified by:

Xe(Tdec)T
3/2
dec ∼

π2

2ζ(3)

H0

√
Ωm,0

ησTT
3/2
0

(3)

where T0 is the CMB temperature today. Evaluating this equation for the decoupling
temperature numerically, the result is Tdec ≈ 0.27eV. Tdec is found to be only very weakly
dependent on parameters such as H0 or Ωm on the RHS of Equation (3) – motivate
this briefly based on the form of the equations you have derived (you may assume that
Xe(Tdec)� 1). Due to this result, in the remainder of the question you may approximate
Tdec as Tdec ≈ Trec.
(d) Imagine that our current measurements of the CMB temperature T0 were incorrect
and that the current CMB temperature was actually T0 = 1K instead of T0 = 2.73K.
Assuming Tdec = Trec and that η is fixed, determine the ratio of decoupling temperatures
Tdec,1K/Tdec,2.73K and redshifts zdec,1K/zdec,2.73K between cosmologies where T0 = 1K and
where T0 = 2.73K. What parameters could be varied to keep the comoving distance to
CMB decoupling fixed, despite a change in T0?
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3 In this question you will discuss the CMB lensing signal as a direct gravitational
probe of the matter power spectrum. You may assume throughout that all relevant scales
are sub-horizon. You may also assume that linear perturbation theory is sufficiently
accurate for all calculations.

(a) Starting from the evolution equation

δ̈m + 2Hδ̇m − 4πG(ρ̄mδm + ρ̄rδr) = 0, (1)

derive how δm evolves with the scale factor a during matter domination and radiation
domination (you may assume that, since δr oscillates rapidly during radiation domination,
it can be neglected for the purposes of determining the growth of δm).

(b) Sketch the shape of the matter power spectrum P (k) and explain briefly why the slow
sub-horizon growth of δm during radiation domination is important for determining this
shape.

(c) Due to gravitational lensing, the CMB anisotropies are remapped by an observable
angle ∇ψ(n̂), where ψ is the CMB lensing potential and n̂ is a direction on the sky.
This CMB lensing potential is related in the following way to the Newtonian potential
perturbation φ:

ψ(n̂) = −2

∫ χe

0

χe − χ
χχe

φ(n̂χ, τ(χ))dχ. (2)

Here φ(x, τ) is the Newtonian-gauge potential perturbation evaluated at position x
and conformal time τ ; χ is the comoving distance (which corresponds to the conformal time
on the photons path τ(χ) = τ0−χ), and χe is the distance from Earth to the point where
the CMB photon was emitted. You may assume that the Newtonian potential perturbation
φ and matter density contrast δm are related via the Poisson equation ∇2φ = 4πGa2ρ̄mδm.

Show that the spherical multipole coefficients aψlm of the CMB lensing potential

ψ(n̂) =
∑

lm a
ψ
lmYlm(n̂) are given by:

aψlm = 12πΩm,0H
2
0 i

−l
∫ χe

0
dχ

∫
d3k

(2π)3
1

k2
χe − χ
χχe

(
δm(k, τ)

a(τ)

)
jl(kχ)Y ∗

lm(k̂) (3)

[Hint: it may be helpful to use the Rayleigh plane wave expansion:
eik·x = 4π

∑
lm i

ljl(kx)Y ∗
lm(k̂)Ylm(x̂).]

(d) Derive an expression for the angular power spectrum of the CMB lensing potential,

Cψl , in terms of the matter power spectrum P (k) at an early, initial time τi. In deriving
this expression, you should absorb the time evolution of δm(k, τ) into a linear growth
factor Di(τ), defined via δm(k, τ) = Di(τ)δm(k, τi).

[Hint: you may use the definition of the angular power spectrum 〈alma∗l′m′〉 =

Clδl′lδmm′, the orthogonality relation
∫
dk̂Y ∗

lm(k̂)Yl′m′(k̂) = δll′δmm′, and the fact that the
modes of the matter density contrast satisfy δ∗m(k) = δm(−k).]
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4 Consider a standard single-field slow-roll inflation model, where φ is the inflation
field and V (φ) is its potential. You may assume throughout the entire problem that

a(τ) = −(Hτ)−1 (with τ the conformal time) and that H =

√
V (φ)
3M2

pl
≈ constant.

(a) Canonical quantization leads to the following expression for the field operator f̂ = aδ̂φ,
describing perturbations to the inflation field δφ:

f̂(τ,x) =

∫
d3k

(2π)3

[
f∗k(τ)â†ke

−ik·x + fk(τ)âke
ik·x
]

where fk(τ) = e−ikτ√
2k

(1 − i
kτ ) and âk, â

†
k are lowering and raising operators. State

the commutation relations obeyed by âk and â†k′ . By calculating the two point correlation
function of δφ, deduce the dimensionless power spectrum of δφ. Evaluate this spectrum
when k � aH, and show that it is given by

∆2
δφ =

(
H

2π

)2

. (1)

[Hint: you may assume that the dimensionless power spectrum ∆2
δφ is related to the

two point correlation function via 〈0|δ̂φ(τ,x)δ̂φ(τ,x + r)|0〉 =
∫

d3k
(2π)3

2π2

k3
∆2
δφe
−ik·r]

(b) The dimensionless power spectrum of the comoving curvature perturbation R in this
inflation model is hence given by

∆2
R(k) =

1

2εM2
pl

(
H

2π

)2

, (2)

where ε ≡ −d lnH
dN = − Ḣ

H2 is the first Hubble slow-roll parameter. Specify when the right
hand side of this equation is to be evaluated; then show that the scalar spectral index

ns ≡ 1 +
d ln ∆2

R
d ln k is given by

ns − 1 = −2ε− η, (3)

where η = d ln ε
dN is the second Hubble slow roll parameter.

(c) Consider a class of inflation models described by the potential

V (φ) = λM4
pl

(
φ

Mpl

)α
, (4)

with α, λ positive constants. For what φ values can these models support slow-roll
inflation?
[Hint: you may assume that for the Hubble slow-roll parameters ε, η the following holds

during slow-roll inflation:
M2

pl

2

(
V,φ
V

)2
= ε and M2

pl

(
V,φφ
V

)
= 2ε− η

2 .]

(d) The parameter r, which gives the ratio of power spectra of tensor perturbations and
scalar perturbations, is related to the Hubble slow-roll parameter by r = 16ε. For the
class of models in (c), derive a relation between ns − 1 and r. Given this relation, which
ranges of observed (r, ns − 1) values are consistent with this class of models?
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