
MATHEMATICAL TRIPOS Part III

Friday, 3 June, 2022 9:00 am to 12:00 pm

PAPER 302

SYMMETRIES, FIELDS AND PARTICLES

Before you begin please read these instructions carefully

Candidates have THREE HOURS to complete the written examination.

Attempt no more than THREE questions.
There are FOUR questions in total.
The questions carry equal weight.

STATIONERY REQUIREMENTS SPECIAL REQUIREMENTS
Cover sheet None
Treasury tag
Script paper
Rough paper

You may not start to read the questions
printed on the subsequent pages until
instructed to do so by the Invigilator.



2

1 In this question, you may quote results from lectures that you use for the calculation
without proof, provided you clearly state them.

Take a real simple Lie algebra L(G) with exactly two simple roots

α1 = (1, 0), α2 = (−1, 1) .

Assume that Ei±, Hi are the SU(2) generators associated with root αi (i = 1, 2).

(i) Calculate the Cartan matrix. Then calculate the weight space of the adjoint
representation, writing each weight in terms of the αi. Draw its weight diagram.

(ii) Determine the fundamental weights µi explicitly, in terms of the αi.

(iii) By using Ei±, find weights for the irreducible representation d with highest weight
µ2, writing each weight in terms of µ2 and the αi. Draw the corresponding weight
diagram. Is the representation real or complex? You may assume that the weights
all have multiplicity 1.

(iv) Which complex Lie algebra in Cartan’s classification corresponds to the complexi-
fication of L(G) (note any isomorphisms)? Given that the representation identified
in (iii) is in the fundamental representation of the group, identify G. Putting an
appropriate scalar field φ in the fundamental representation space of G, write its
transformation under a gauge transformation g(x) ∈ G. Write the gauge transform-
ation of the associated Yang-Mills gauge field Aµ. How many real degrees of freedom
do you expect in the second component, A1?

(v) In terms of the gauge coupling λ, define a covariant derivative Dµφ and compute its
gauge transformation.

(vi) Defining the non-abelian field strength tensor Fµν by Fµνφ = 1
λ [Dµ, Dν ]φ, compute

the field strength solely in terms of Aµ and partial derivatives.

(vii) By calculating the transformation of Fµνφ, derive the transformation of Fµν in terms
of g(x).

(viii) Write a general Lorentz invariant, renormalisable, locally G−invariant Lagrangian
density L for φ. Give the mass dimensions of any constants that you introduce.

(ix) Verify the local G−invariance of L.
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2 A Poincaré transformation xµ → x′µ = Λµνx
ν + aµ is written here as (Λ, a), where

Λµν is a Lorentz transformation.

(i) Compute (L, b)(Λ, a).

(ii) Determine (Λ, a)−1 in terms of Λ and a.

(iii) Defining (Λc, ac) := [(L, b), (Λ, a)], where [, ] denotes the commutator, find Λc and
ac in terms of L, Λ, b and a.

(iv) Defining the infinitesimal Lorentz transformations Λ := I + ωΛ + O(ω2
Λ) and

L := I + ωL +O(ω2
L), find ac to first order in ωL and first order in ωΛ.

(v) Putting Λc := I + ωc + O(ω2
c ) and neglecting terms of O(ω2

L) and those of O(ω2
Λ),

find Λc in terms of ωL and ωΛ.

(vi) Write the defining relation for Λµν in terms of the Minkowski metric ηρσ and thus
derive a symmetry relation for ωΛ under interchange of its indices.

(vii) We now introduce a unitary operator corresponding to a Poincaré transformation
U [(Λ, a)], imposing that

U [(Λ2, a2)]U [(Λ1, a1)] = U [(Λ2, a2)(Λ1, a1)].

Expanding in infinitesimal ω and a parameters U [(Λ(ω), a)] := I+ 1
2ω

µνMµν+aµPµ+
. . ., where Mµν = −Mνµ and Pµ are operators. Retaining constant, linear and
bilinear terms in ωΛ, ωL, a, b but neglecting those of quadratic order, show that

U [(Λc(ωc), ac)] = I +

[
1

2
ωL

µνMµν + bµPµ,
1

2
ωΛ

ρσMρσ + aρPρ

]
+ . . .

(viii) Thus derive the Poincaré algrebra, i.e. [Pµ, Pν ], [Mµσ, Pρ] and [Mµν , Mρσ].
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(a) The Pauli matrices σi are defined to be

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)

and we define I to be the 2 by 2 identity matrix. By considering that {I, σi}
where i ∈ {1, 2, 3} form a basis of complex matrices and by using the simultaneous
transformations σi → Rjiσj , I → I, where R ∈ SO(3), show that

σjσk = Iδjk + iεjklσl.

(b) Take a theory invariant under the following simultaneous global symmetry transform-
ations of complex scalar fields φ1 and φ2:

φ1 →
(

cos z + i
√

1− x2 − y2 sin z
)
φ1 − (y sin z + ix sin z)φ2,

φ2 → (y sin z − ix sin z)φ1 +
(

cos z − i
√

1− x2 − y2 sin z
)
φ2,

where x, y, z are arbitrary real parameters satisfying x2 + y2 6 1:

(i) Identify the corresponding matrix group and the representation space of complex
scalar fields that it acts upon. Give full justification.

(ii) Write down the most general renormalisable Lorentz invariant Lagrangian dens-
ity that involves only φ1, φ2 but respects the symmetries given.

(iii) Draw Feynman diagrams of any interactions involving φ1 and/or φ2 and write
their respective Feynman rules.
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(i) Define a representation D of a group G over a field F .

(ii) Define a representation d of Lie algebra L(G).

(iii) For t ∈ R and square matrices A and B, a truncated Baker-Campbell-Hausdorff
(BCH) formula states that

exp(tA) exp(tB) = exp(α(A,B) + tβ(A,B) + t2γ(A,B) +O(t3)). (∗)

By expanding in t, find the functions α, β and γ.

(iv) Show that D(g = expX) = exp(d(X)) is a representation of the image of the
exponential of L(G). Explicitly state how each line in your proof is obtained. You
may use properties of the higher order terms in the BCH formula that you know
without proof, provided that you state them clearly at any points they are used.

(v) Let A be an n×n matrix over the complex numbers and U = expA be a non-singular
matrix. Show that A† = −A⇒ U ∈ U(n).

(vi) Identify the set LR(U(n)) and thus calculate the real dimension of LR(U(n)).
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