MATHEMATICAL TRIPOS Part III

Friday, 10 June, 2022 $$ 9:00 am to 11:00 am

PAPER 225

FUNCTIONAL DATA ANALYSIS

Before you begin please read these instructions carefully

Candidates have TWO HOURS to complete the written examination.

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

SPECIAL REQUIREMENTS None

Cover sheet Treasury tag Script paper Rough paper

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 Let X be a random element of $L^2[0,1]$ such that $\mathbb{E}||X||^2 \leq \infty$, $\mathbb{E}X = \mu$ and with covariance operator $C_X(\cdot) = \mathbb{E}(\langle X, \cdot \rangle X)$.

- (a) Prove that C_X is symmetric, non-negative definite and trace class.
- (b) Show that the Identity operator (the operator which takes any element of $L^2[0,1]$ to itself) is not a covariance operator
- (c) Show that not every bounded, symmetric, Hilbert-Schmidt operator is a covariance operator
- (d) Now let X_1, \ldots, X_n be i.i.d. random elements of $L^2[0,1]$ with the same distribution as X above.

Show that $\mathbb{E}(\hat{\mu}) = \mu$ and $\mathbb{E}\|\hat{\mu} - \mu\|^2 = O(\frac{1}{n})$, where $\hat{\mu}(t) = \frac{1}{n} \sum_{i=1}^n X_i(t)$.

(e) Let (λ_k, ϕ_k) and $(\lambda_{k'}, \phi_{k'})$ be the $k, k' \in \mathbb{N}$ (not necessarily distinct) eigenvalue and associated eigenfunction pairs of C_X .

Find $\operatorname{Cov}(\langle \hat{\mu}, \phi_k \rangle, \langle \hat{\mu}, \phi_{k'} \rangle).$

2 Let X, X_1, \ldots, X_n be i.i.d. random elements of $L^2[0,1]$ such that $\mathbb{E}||X||^4 \leq \infty$, $\mathbb{E}X = \mu$ and with covariance operator C_X . Let $\{\lambda_k, \phi_k\}_{k=1}^{\infty}$ be the eigenvalues/eigenfunctions of C_X , and assume $\lambda_1 > \lambda_2 > \ldots$.

(a) Let $H_0: \mu = \mu_0$ and $H_A: \mu \neq \mu_0$

Find the large sample behaviour of the test statistic

$$T_{PC} = n \sum_{k=1}^{K} \frac{\langle \hat{\mu} - \mu_0, \hat{\phi}_k \rangle^2}{\hat{\lambda}_k}$$

under the null and alternative hypotheses. Here $\hat{\mu}$, $\hat{\phi}_k$, $\hat{\lambda}_k$ are the sample versions of μ , ϕ_k , λ_k , respectively, and $K \in \mathbb{N}$.

[You may assume that the first K + 1 eigenvalues of covariance operators of X are distinct, and you may also use without proof the convergence properties of eigenvalues, eigenfunctions and any version of the central limit theorem]

(b) Assume $\mu \neq \mu_0$. Define $C^*(\cdot) = C_X(\cdot) + \langle \mu - \mu_0, \cdot \rangle (\mu - \mu_0)$, and let $\{\lambda_k^*, \phi_k^*\}_{k=1}^{\infty}$ be the eigenvalues/eigenfunctions of C^* , and assume $\lambda_1^* > \lambda_2^* > \ldots$.

Show that if, for some $k, 1 \leq k \leq K$, $\langle \mu - \mu_0, \phi_k \rangle \neq 0$, then $\exists l, 1 \leq l \leq K$, such that $\langle \mu - \mu_0, \phi_l^* \rangle \neq 0$

(c) Again assume $\mu \neq \mu_0$. Let $(\mu - \mu_0) = b\phi_{K+1}$, for some $b \in \mathbb{R}, b \neq 0$. Explain why a test for the hypothesis of part (a) based on the first K eigenfunctions of C^* , as defined in part (b), might be preferable to a test based on the first K eigenfunctions of C_X .

[There is no need to construct the test for part (c)].

- **3** Let C_1 and C_2 be covariance operators on a separable Hilbert Space
 - (a) Define the square-root distance $d_R(C_1, C_2)$ and Procrustes distance $d_P(C_1, C_2)$.
 - (b) Prove the Procrustes distance is given by

$$d_P^2(C_1, C_2) = \|L_1\|_{HS}^2 + \|L_2\|_{HS}^2 - 2\sum_{k=1}^{\infty} \sigma_k$$

where $C_i = L_i L_i^*$, L_i^* is the adjoint of L, σ_k are the singular values of $L_2^* L_1$, and where $\|\cdot\|_{HS}$ is the Hilbert-Schmidt norm.

(c) Assume that there exists sequences $L_i^{(p)}$ such that $L_i^{(p)}(L_i^{(p)})^* = C_i^{(p)}$ and $L_i^{(p)} \to L_i$ in the Hilbert-Schmidt norm as $p \to \infty$ where $L_i L_i^* = C_i$. Prove that the Procrustes distance

$$d_P^2(C_1^{(p)}, C_2^{(p)}) \to d_P^2(C_1, C_2)$$
 as $p \to \infty$.

(d) Find a pair C_1 and C_2 , $C_1 \neq C_2$, where $d_P(C_1, C_2) = d_R(C_1, C_2)$.

4 Let X, X_1, \ldots, X_n be i.i.d. random elements of $L^2[0,1]$ such that $\mathbb{E}||X||^4 \leq \infty$, $\mathbb{E}X = 0$. Let $\epsilon, \epsilon_1, \ldots, \epsilon_n$ be i.i.d. random elements of $L^2[0,1]$ such that $\mathbb{E}||\epsilon||^4 \leq \infty$, $\mathbb{E}(\epsilon) = 0$, and let X, X_1, \ldots, X_n be mutually independent of $\epsilon, \epsilon_1, \ldots, \epsilon_n$. For each i, let (Y_i, X_i, ϵ_i) follow the same population model as (Y, X, ϵ) namely,

$$Y(t) = \int_0^1 \beta(t,s)X(s)ds + \epsilon(t) \quad t \in [0,1]$$

where $\beta(t,s) \in L^2([0,1] \times [0,1])$, and $\int_0^1 \int_0^1 \beta^2(t,s) dt ds < \infty$. Let $H_0: \beta = 0$ and $H_A: \beta \neq 0$.

Define a finite-dimensional statistic, based on the first K eigenfunctions of the covariance operator of X and the first L eigenfunctions of the covariance operator of Y to test the null hypothesis. Determine the asymptotic properties, as $n \to \infty$, of the test under the null hypotheses.

[You may assume that the eigenvalues of covariance operators of X and Y are all distinct, and you may also use without proof the convergence properties of eigenvalues, eigenfunctions and any version of the central limit theorem].

END OF PAPER