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1 Let X be a random element of L2[0, 1] such that E‖X‖2 6 ∞, EX = µ and with
covariance operator CX(·) = E(〈X, ·〉X).

(a) Prove that CX is symmetric, non-negative definite and trace class.

(b) Show that the Identity operator (the operator which takes any element of L2[0, 1]
to itself) is not a covariance operator

(c) Show that not every bounded, symmetric, Hilbert-Schmidt operator is a covari-
ance operator

(d) Now let X1, . . . , Xn be i.i.d. random elements of L2[0, 1] with the same
distribution as X above.

Show that E(µ̂) = µ and E‖µ̂− µ‖2 = O( 1
n), where µ̂(t) = 1

n

∑n
i=1Xi(t).

(e) Let (λk, φk) and (λk′ , φk′) be the k, k′ ∈ N (not necessarily distinct) eigenvalue
and associated eigenfunction pairs of CX .

Find Cov(〈µ̂, φk〉, 〈µ̂, φk′〉).
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2 Let X,X1, . . . , Xn be i.i.d. random elements of L2[0, 1] such that E‖X‖4 6
∞, EX = µ and with covariance operator CX . Let {λk, φk}∞k=1 be the eigenval-
ues/eigenfunctions of CX , and assume λ1 > λ2 > . . ..

(a) Let H0 : µ = µ0 and HA : µ 6= µ0

Find the large sample behaviour of the test statistic

TPC = n

K∑

k=1

〈µ̂− µ0, φ̂k〉2
λ̂k

under the null and alternative hypotheses. Here µ̂, φ̂k, λ̂k are the sample
versions of µ, φk, λk, respectively, and K ∈ N.

[You may assume that the first K + 1 eigenvalues of covariance operators of X
are distinct, and you may also use without proof the convergence properties of
eigenvalues, eigenfunctions and any version of the central limit theorem]

(b) Assume µ 6= µ0. Define C∗(·) = CX(·) + 〈µ−µ0, ·〉(µ−µ0), and let {λ∗k, φ∗k}∞k=1

be the eigenvalues/eigenfunctions of C∗, and assume λ∗1 > λ∗2 > . . ..

Show that if, for some k, 1 6 k 6 K, 〈µ− µ0, φk〉 6= 0, then ∃l, 1 6 l 6 K, such
that 〈µ− µ0, φ∗l 〉 6= 0

(c) Again assume µ 6= µ0. Let (µ − µ0) = bφK+1, for some b ∈ R, b 6= 0. Explain
why a test for the hypothesis of part (a) based on the first K eigenfunctions of
C∗, as defined in part (b), might be preferable to a test based on the first K
eigenfunctions of CX .

[There is no need to construct the test for part (c)].
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3 Let C1 and C2 be covariance operators on a separable Hilbert Space

(a) Define the square-root distance dR(C1, C2) and Procrustes distance dP (C1, C2).

(b) Prove the Procrustes distance is given by

d2P (C1, C2) = ‖L1‖2HS + ‖L2‖2HS − 2
∞∑

k=1

σk

where Ci = LiL
∗
i , L

∗
i is the adjoint of L, σk are the singular values of L∗2L1, and

where ‖ · ‖HS is the Hilbert-Schmidt norm.

(c) Assume that there exists sequences L
(p)
i such that L

(p)
i (L

(p)
i )∗ = C

(p)
i and

L
(p)
i → Li in the Hilbert-Schmidt norm as p → ∞ where LiL

∗
i = Ci. Prove

that the Procrustes distance

d2P (C
(p)
1 , C

(p)
2 )→ d2P (C1, C2) as p→∞.

(d) Find a pair C1 and C2, C1 6= C2, where dP (C1, C2) = dR(C1, C2).

4 Let X,X1, . . . , Xn be i.i.d. random elements of L2[0, 1] such that E‖X‖4 6 ∞,
EX = 0. Let ε, ε1, . . . , εn be i.i.d. random elements of L2[0, 1] such that E‖ε‖4 6 ∞,
E(ε) = 0, and let X,X1, . . . , Xn be mutually independent of ε, ε1, . . . , εn. For each i, let
(Yi, Xi, εi) follow the same population model as (Y,X, ε) namely,

Y (t) =

∫ 1

0
β(t, s)X(s)ds+ ε(t) t ∈ [0, 1]

where β(t, s) ∈ L2([0, 1]× [0, 1]), and
∫ 1
0

∫ 1
0 β

2(t, s)dtds <∞.

Let H0 : β = 0 and HA : β 6= 0.

Define a finite-dimensional statistic, based on the first K eigenfunctions of the
covariance operator of X and the first L eigenfunctions of the covariance operator of
Y to test the null hypothesis. Determine the asymptotic properties, as n→∞, of the test
under the null hypotheses.

[You may assume that the eigenvalues of covariance operators of X and Y are all
distinct, and you may also use without proof the convergence properties of eigenvalues,
eigenfunctions and any version of the central limit theorem].
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